344 lines
15 KiB
C++
344 lines
15 KiB
C++
|
/*
|
||
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
|
||
|
Author: Leonardo de Moura
|
||
|
*/
|
||
|
#include "util/sstream.h"
|
||
|
#include "util/name_map.h"
|
||
|
#include "kernel/replace_fn.h"
|
||
|
#include "kernel/type_checker.h"
|
||
|
#include "kernel/instantiate.h"
|
||
|
#include "kernel/inductive/inductive.h"
|
||
|
#include "library/scoped_ext.h"
|
||
|
#include "library/locals.h"
|
||
|
#include "library/placeholder.h"
|
||
|
#include "library/aliases.h"
|
||
|
#include "frontends/lean/decl_cmds.h"
|
||
|
#include "frontends/lean/util.h"
|
||
|
#include "frontends/lean/parser.h"
|
||
|
|
||
|
namespace lean {
|
||
|
static name g_assign(":=");
|
||
|
static name g_with("with");
|
||
|
static name g_colon(":");
|
||
|
static name g_bar("|");
|
||
|
|
||
|
using inductive::intro_rule;
|
||
|
using inductive::inductive_decl;
|
||
|
using inductive::inductive_decl_name;
|
||
|
using inductive::inductive_decl_type;
|
||
|
using inductive::inductive_decl_intros;
|
||
|
using inductive::intro_rule_name;
|
||
|
using inductive::intro_rule_type;
|
||
|
|
||
|
// Mark all parameters as implicit
|
||
|
static void make_implicit(buffer<parameter> & ps) {
|
||
|
for (parameter & p : ps)
|
||
|
p.m_bi = mk_implicit_binder_info();
|
||
|
}
|
||
|
|
||
|
// Make sure that every inductive datatype (in decls) occurring in \c type has
|
||
|
// the universe levels \c lvl_params and section parameters \c section_params
|
||
|
static expr fix_inductive_occs(expr const & type, buffer<inductive_decl> const & decls,
|
||
|
buffer<name> const & lvl_params, buffer<parameter> const & section_params) {
|
||
|
return replace(type, [&](expr const & e, unsigned) {
|
||
|
if (!is_constant(e))
|
||
|
return none_expr();
|
||
|
if (!std::any_of(decls.begin(), decls.end(),
|
||
|
[&](inductive_decl const & d) { return const_name(e) == inductive_decl_name(d); }))
|
||
|
return none_expr();
|
||
|
// found target
|
||
|
levels ls = const_levels(e);
|
||
|
unsigned n = length(ls);
|
||
|
if (n < lvl_params.size()) {
|
||
|
unsigned i = lvl_params.size() - n;
|
||
|
while (i > 0) {
|
||
|
--i;
|
||
|
ls = cons(mk_param_univ(lvl_params[i]), ls);
|
||
|
}
|
||
|
}
|
||
|
expr r = update_constant(e, ls);
|
||
|
for (unsigned i = 0; i < section_params.size(); i++)
|
||
|
r = mk_app(r, section_params[i].m_local);
|
||
|
return some_expr(r);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
static level mk_result_level(bool impredicative, buffer<level> const & ls) {
|
||
|
if (ls.empty()) {
|
||
|
return impredicative ? mk_level_one() : mk_level_zero();
|
||
|
} else {
|
||
|
level r = ls[0];
|
||
|
for (unsigned i = 1; i < ls.size(); i++)
|
||
|
r = mk_max(r, ls[i]);
|
||
|
return impredicative ? mk_max(r, mk_level_one()) : r;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static expr update_result_sort(expr const & t, level const & l) {
|
||
|
if (is_pi(t)) {
|
||
|
return update_binding(t, binding_domain(t), update_result_sort(binding_body(t), l));
|
||
|
} else if (is_sort(t)) {
|
||
|
return update_sort(t, l);
|
||
|
} else {
|
||
|
lean_unreachable();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static name g_tmp_prefix = name::mk_internal_unique_name();
|
||
|
static void set_result_universes(buffer<inductive_decl> & decls, level_param_names const & lvls, unsigned num_params, parser & p) {
|
||
|
if (std::all_of(decls.begin(), decls.end(), [](inductive_decl const & d) {
|
||
|
return !has_placeholder(inductive_decl_type(d));
|
||
|
}))
|
||
|
return; // nothing to be done
|
||
|
// We can't infer the type of intro rule arguments because we did declare the inductive datatypes.
|
||
|
// So, we use the following trick, we create a "draft" environment where the inductive datatypes
|
||
|
// are asserted as variable declarations, and keep doing that until we reach a "fix" point.
|
||
|
unsigned num_rounds = 0;
|
||
|
while (true) {
|
||
|
if (num_rounds > 2*decls.size() + 1) {
|
||
|
// TODO(Leo): this is test is a hack to avoid non-termination.
|
||
|
// We should use a better termination condition
|
||
|
throw exception("failed to compute resultant universe level for inductive datatypes, "
|
||
|
"provide explicit universe levels");
|
||
|
}
|
||
|
num_rounds++;
|
||
|
bool progress = false;
|
||
|
environment env = p.env();
|
||
|
bool impredicative = env.impredicative();
|
||
|
// first assert inductive types that do not have placeholders
|
||
|
for (auto const & d : decls) {
|
||
|
expr type = inductive_decl_type(d);
|
||
|
if (!has_placeholder(type))
|
||
|
env = env.add(check(env, mk_var_decl(inductive_decl_name(d), lvls, inductive_decl_type(d))));
|
||
|
}
|
||
|
type_checker tc(env);
|
||
|
name_generator ngen(g_tmp_prefix);
|
||
|
// try to update resultant universe levels
|
||
|
for (auto & d : decls) {
|
||
|
expr d_t = inductive_decl_type(d);
|
||
|
while (is_pi(d_t)) {
|
||
|
d_t = binding_body(d_t);
|
||
|
}
|
||
|
if (!is_sort(d_t))
|
||
|
throw exception(sstream() << "invalid inductive datatype '" << inductive_decl_name(d) << "', "
|
||
|
"resultant type is not a sort");
|
||
|
level r_lvl = sort_level(d_t);
|
||
|
if (impredicative && is_zero(r_lvl))
|
||
|
continue;
|
||
|
buffer<level> lvls;
|
||
|
for (intro_rule const & ir : inductive_decl_intros(d)) {
|
||
|
expr t = intro_rule_type(ir);
|
||
|
unsigned i = 0;
|
||
|
while (is_pi(t)) {
|
||
|
if (i >= num_params) {
|
||
|
try {
|
||
|
expr s = tc.ensure_sort(tc.infer(binding_domain(t)));
|
||
|
level lvl = sort_level(s);
|
||
|
if (std::find(lvls.begin(), lvls.end(), lvl) == lvls.end())
|
||
|
lvls.push_back(lvl);
|
||
|
} catch (...) {
|
||
|
}
|
||
|
}
|
||
|
t = instantiate(binding_body(t), mk_local(ngen.next(), binding_name(t), binding_domain(t)));
|
||
|
i++;
|
||
|
}
|
||
|
}
|
||
|
level m_lvl = normalize(mk_result_level(impredicative, lvls));
|
||
|
if (is_placeholder(r_lvl) || !(is_geq(r_lvl, m_lvl))) {
|
||
|
progress = true;
|
||
|
// update result level
|
||
|
expr new_type = update_result_sort(inductive_decl_type(d), m_lvl);
|
||
|
d = inductive_decl(inductive_decl_name(d), new_type, inductive_decl_intros(d));
|
||
|
}
|
||
|
}
|
||
|
if (!progress)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static environment create_alias(environment const & env, name const & full_id, name const & id, levels const & section_leves,
|
||
|
buffer<parameter> const & section_params, parser & p) {
|
||
|
if (in_section(env)) {
|
||
|
expr r = mark_explicit(mk_constant(full_id, section_leves));
|
||
|
for (unsigned i = 0; i < section_params.size(); i++)
|
||
|
r = mk_app(r, section_params[i].m_local);
|
||
|
p.add_local_expr(id, r);
|
||
|
return env;
|
||
|
} else if (full_id != id) {
|
||
|
return add_alias(env, id, mk_constant(full_id));
|
||
|
} else {
|
||
|
return env;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
environment inductive_cmd(parser & p) {
|
||
|
parser::no_undef_id_error_scope err_scope(p);
|
||
|
environment env = p.env();
|
||
|
name const & ns = get_namespace(env);
|
||
|
bool first = true;
|
||
|
buffer<name> ls_buffer;
|
||
|
name_map<name> id_to_short_id;
|
||
|
unsigned num_params = 0;
|
||
|
bool explicit_levels = false;
|
||
|
buffer<inductive_decl> decls;
|
||
|
while (true) {
|
||
|
parser::local_scope l_scope(p);
|
||
|
auto id_pos = p.pos();
|
||
|
name id = p.check_id_next("invalid inductive declaration, identifier expected");
|
||
|
check_atomic(id);
|
||
|
name full_id = ns + id;
|
||
|
id_to_short_id.insert(full_id, id);
|
||
|
buffer<name> curr_ls_buffer;
|
||
|
expr type;
|
||
|
optional<parser::param_universe_scope> pu_scope;
|
||
|
if (parse_univ_params(p, curr_ls_buffer)) {
|
||
|
if (first) {
|
||
|
explicit_levels = true;
|
||
|
ls_buffer.append(curr_ls_buffer);
|
||
|
} else if (!explicit_levels) {
|
||
|
throw parser_error("invalid mutually recursive declaration, "
|
||
|
"explicit universe levels were not provided for previous inductive types in this declaration",
|
||
|
id_pos);
|
||
|
} else if (curr_ls_buffer.size() != ls_buffer.size()) {
|
||
|
throw parser_error("invalid mutually recursive declaration, "
|
||
|
"all inductive types must have the same number of universe paramaters", id_pos);
|
||
|
} else {
|
||
|
for (unsigned i = 0; i < ls_buffer.size(); i++) {
|
||
|
if (curr_ls_buffer[i] != ls_buffer[i])
|
||
|
throw parser_error("invalid mutually recursive inductive declaration, "
|
||
|
"all inductive types must have the same universe paramaters", id_pos);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (first) {
|
||
|
explicit_levels = false;
|
||
|
} else if (explicit_levels) {
|
||
|
throw parser_error("invalid mutually recursive declaration, "
|
||
|
"explicit universe levels were provided for previous inductive types in this declaration",
|
||
|
id_pos);
|
||
|
}
|
||
|
// initialize param_universe_scope, we are using implicit universe levels
|
||
|
pu_scope.emplace(p);
|
||
|
}
|
||
|
buffer<parameter> ps;
|
||
|
local_environment lenv = env;
|
||
|
auto params_pos = p.pos();
|
||
|
if (!p.curr_is_token(g_colon)) {
|
||
|
lenv = p.parse_binders(ps);
|
||
|
p.check_token_next(g_colon, "invalid inductive declaration, ':' expected");
|
||
|
{
|
||
|
parser::placeholder_universe_scope place_scope(p);
|
||
|
type = p.parse_scoped_expr(ps, lenv);
|
||
|
}
|
||
|
type = p.pi_abstract(ps, type);
|
||
|
} else {
|
||
|
p.next();
|
||
|
parser::placeholder_universe_scope place_scope(p);
|
||
|
type = p.parse_scoped_expr(ps, lenv);
|
||
|
}
|
||
|
// check if number of parameters
|
||
|
if (first) {
|
||
|
num_params = ps.size();
|
||
|
} else {
|
||
|
// mutually recursive declaration checks
|
||
|
if (num_params != ps.size()) {
|
||
|
throw parser_error("invalid mutually recursive inductive declaration, "
|
||
|
"all inductive types must have the same number of arguments",
|
||
|
params_pos);
|
||
|
}
|
||
|
}
|
||
|
make_implicit(ps); // parameters are implicit for introduction rules
|
||
|
// parse introduction rules
|
||
|
p.check_token_next(g_assign, "invalid inductive declaration, ':=' expected");
|
||
|
buffer<intro_rule> intros;
|
||
|
while (p.curr_is_token(g_bar)) {
|
||
|
p.next();
|
||
|
name intro_id = p.check_id_next("invalid introduction rule, identifier expected");
|
||
|
check_atomic(intro_id);
|
||
|
name full_intro_id = ns + intro_id;
|
||
|
id_to_short_id.insert(full_intro_id, intro_id);
|
||
|
p.check_token_next(g_colon, "invalid introduction rule, ':' expected");
|
||
|
expr intro_type = p.parse_scoped_expr(ps, lenv);
|
||
|
intro_type = p.pi_abstract(ps, intro_type);
|
||
|
intros.push_back(intro_rule(full_intro_id, intro_type));
|
||
|
}
|
||
|
decls.push_back(inductive_decl(full_id, type, to_list(intros.begin(), intros.end())));
|
||
|
if (!p.curr_is_token(g_with))
|
||
|
break;
|
||
|
p.next();
|
||
|
first = false;
|
||
|
}
|
||
|
// Collect (section) locals occurring in inductive_decls, and abstract them
|
||
|
// using these additional parameters.
|
||
|
name_set used_levels;
|
||
|
name_set section_locals;
|
||
|
for (inductive_decl const & d : decls) {
|
||
|
used_levels = collect_univ_params(inductive_decl_type(d), used_levels);
|
||
|
section_locals = collect_locals(inductive_decl_type(d), section_locals);
|
||
|
for (auto const & ir : inductive_decl_intros(d)) {
|
||
|
used_levels = collect_univ_params(intro_rule_type(ir), used_levels);
|
||
|
section_locals = collect_locals(intro_rule_type(ir), section_locals);
|
||
|
}
|
||
|
}
|
||
|
update_univ_parameters(ls_buffer, used_levels, p);
|
||
|
buffer<parameter> section_params;
|
||
|
mk_section_params(section_locals, p, section_params);
|
||
|
// First, add section_params to inductive types type.
|
||
|
// We don't update the introduction rules in the first pass, because
|
||
|
// we will mark all section_params as implicit for them.
|
||
|
for (inductive_decl & d : decls) {
|
||
|
d = inductive_decl(inductive_decl_name(d),
|
||
|
p.pi_abstract(section_params, inductive_decl_type(d)),
|
||
|
inductive_decl_intros(d));
|
||
|
}
|
||
|
make_implicit(section_params);
|
||
|
// Add section_params to introduction rules type, and also "fix"
|
||
|
// occurrences of inductive types.
|
||
|
for (inductive_decl & d : decls) {
|
||
|
buffer<intro_rule> new_irs;
|
||
|
for (auto const & ir : inductive_decl_intros(d)) {
|
||
|
expr type = intro_rule_type(ir);
|
||
|
type = fix_inductive_occs(type, decls, ls_buffer, section_params);
|
||
|
type = p.pi_abstract(section_params, type);
|
||
|
new_irs.push_back(intro_rule(intro_rule_name(ir), type));
|
||
|
}
|
||
|
d = inductive_decl(inductive_decl_name(d),
|
||
|
inductive_decl_type(d),
|
||
|
to_list(new_irs.begin(), new_irs.end()));
|
||
|
}
|
||
|
num_params += section_params.size();
|
||
|
level_param_names ls = to_list(ls_buffer.begin(), ls_buffer.end());
|
||
|
|
||
|
// Check if introduction rules do not have placeholders
|
||
|
for (inductive_decl const & d : decls) {
|
||
|
for (auto const & ir : inductive_decl_intros(d)) {
|
||
|
if (has_placeholder(intro_rule_type(ir)))
|
||
|
throw exception(sstream() << "invalid inductive datatype '" << inductive_decl_name(d) << "', "
|
||
|
<< "introduction rule '" << intro_rule_name(ir) << "' has placeholders");
|
||
|
}
|
||
|
}
|
||
|
// "Fix" the inductive type resultant type universe level, if it was not explicitly provided.
|
||
|
set_result_universes(decls, ls, num_params, p);
|
||
|
env = module::add_inductive(env, ls, num_params, to_list(decls.begin(), decls.end()));
|
||
|
// Create aliases/local refs
|
||
|
levels section_levels = collect_section_levels(ls, p);
|
||
|
for (inductive_decl const & d : decls) {
|
||
|
name const & n = inductive_decl_name(d);
|
||
|
env = create_alias(env, n, *id_to_short_id.find(n), section_levels, section_params, p);
|
||
|
env = create_alias(env, n.append_after("_rec"), id_to_short_id.find(n)->append_after("_rec"), section_levels, section_params, p);
|
||
|
for (intro_rule const & ir : inductive_decl_intros(d)) {
|
||
|
name const & n = intro_rule_name(ir);
|
||
|
env = create_alias(env, n, *id_to_short_id.find(n), section_levels, section_params, p);
|
||
|
}
|
||
|
}
|
||
|
return env;
|
||
|
}
|
||
|
void register_inductive_cmd(cmd_table & r) {
|
||
|
add_cmd(r, cmd_info("inductive", "declare an inductive datatype", inductive_cmd));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|