2013-12-01 18:41:05 +00:00
|
|
|
Definition f(a : Bool) : Bool := not a.
|
|
|
|
Definition g(a b : Bool) : Bool := a \/ b.
|
|
|
|
|
|
|
|
Theorem T1 (a b : Bool) : (g a b) => (f b) => a := _.
|
2013-12-06 04:00:20 +00:00
|
|
|
apply unfold_tac
|
|
|
|
apply imp_tac
|
|
|
|
apply imp_tac
|
|
|
|
apply disj_hyp_tac
|
|
|
|
assumption
|
|
|
|
apply absurd_tac
|
2013-12-01 18:41:05 +00:00
|
|
|
done.
|
|
|
|
|
|
|
|
(**
|
2013-12-06 04:00:20 +00:00
|
|
|
simple_tac = REPEAT(unfold_tac) .. REPEAT(ORELSE(imp_tac, conj_hyp_tac, assumption_tac, absurd_tac, conj_hyp_tac, disj_hyp_tac))
|
2013-12-01 18:41:05 +00:00
|
|
|
**)
|
|
|
|
|
|
|
|
Definition h(a b : Bool) : Bool := g a b.
|
|
|
|
|
|
|
|
Theorem T2 (a b : Bool) : (h a b) => (f b) => a := _.
|
|
|
|
apply simple_tac
|
|
|
|
done.
|
|
|
|
|
|
|
|
Show Environment 1.
|