2015-03-06 02:07:06 +00:00
|
|
|
import data.num data.bool
|
|
|
|
|
|
|
|
open bool well_founded
|
|
|
|
|
|
|
|
namespace pos_num
|
|
|
|
|
|
|
|
definition lt_pred (a b : pos_num) : Prop := lt a b = tt
|
|
|
|
|
|
|
|
definition not_lt_one1 (a : pos_num) : ¬ lt_pred a one :=
|
|
|
|
begin
|
2015-03-28 00:26:06 +00:00
|
|
|
esimp [lt_pred],
|
2015-03-06 02:07:06 +00:00
|
|
|
intro H,
|
|
|
|
apply (absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff a) H)
|
|
|
|
end
|
|
|
|
|
|
|
|
open tactic well_founded
|
|
|
|
|
|
|
|
print raw intro -- intro is overloaded
|
|
|
|
|
|
|
|
definition not_lt_one2 (a : pos_num) : ¬ lt_pred a one :=
|
|
|
|
begin
|
2015-03-28 00:26:06 +00:00
|
|
|
esimp [lt_pred],
|
2015-03-06 02:07:06 +00:00
|
|
|
intro H,
|
|
|
|
apply (absurd_of_eq_ff_of_eq_tt (lt_one_right_eq_ff a) H)
|
|
|
|
end
|
|
|
|
|
|
|
|
end pos_num
|