lean2/src/library/congr_lemma_manager.cpp

578 lines
25 KiB
C++
Raw Normal View History

/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "kernel/instantiate.h"
#include "kernel/abstract.h"
#include "library/util.h"
#include "library/trace.h"
#include "library/locals.h"
#include "library/constants.h"
#include "library/replace_visitor.h"
#include "library/relation_manager.h"
#include "library/congr_lemma_manager.h"
namespace lean {
bool congr_lemma::all_eq_kind() const {
return std::all_of(m_arg_kinds.begin(), m_arg_kinds.end(),
[](congr_arg_kind k) { return k == congr_arg_kind::Eq; });
}
struct congr_lemma_manager::imp {
app_builder & m_builder;
fun_info_manager & m_fmanager;
type_context & m_ctx;
struct key {
expr m_fn;
unsigned m_nargs;
unsigned m_hash;
key(expr const & fn, unsigned nargs):
m_fn(fn), m_nargs(nargs), m_hash(hash(m_fn.hash(), m_nargs)) {}
};
struct key_hash_fn {
unsigned operator()(key const & k) const { return k.m_hash; }
};
struct key_eq_fn {
bool operator()(key const & k1, key const & k2) const {
return k1.m_fn == k2.m_fn && k1.m_nargs == k2.m_nargs;
}
};
std::unordered_map<key, result, key_hash_fn, key_eq_fn> m_simp_cache;
std::unordered_map<key, result, key_hash_fn, key_eq_fn> m_cache;
std::unordered_map<key, result, key_hash_fn, key_eq_fn> m_rel_cache[2];
relation_info_getter m_relation_info_getter;
expr infer(expr const & e) { return m_ctx.infer(e); }
expr whnf(expr const & e) { return m_ctx.whnf(e); }
expr relaxed_whnf(expr const & e) { return m_ctx.relaxed_whnf(e); }
/** \brief (Try to) cast expression \c e to the given type using the equations \c eqs.
\c deps contains the indices of the relevant equalities.
\remark deps is sorted. */
expr cast(expr const & e, expr const & type, list<unsigned> const & deps, buffer<optional<expr>> const & eqs) {
if (!deps)
return e;
unsigned d = head(deps);
auto major = eqs[d];
if (!major) {
return cast(e, type, tail(deps), eqs);
} else {
expr lhs, rhs;
lean_verify(is_eq(mlocal_type(*major), lhs, rhs));
lean_assert(is_local(lhs));
lean_assert(is_local(rhs));
// We compute the new type by replacing rhs with lhs, and major with (refl lhs).
expr motive, new_type;
bool use_drec;
if (depends_on(type, *major)) {
// Since the type depends on the major, we must use dependent elimination.
// and the motive just abstract rhs and *major
use_drec = true;
motive = Fun(rhs, Fun(*major, type));
// We compute new_type by replacing rhs with lhs and *major with eq.refl(lhs) in type.
new_type = instantiate(abstract_local(type, rhs), lhs);
expr refl = m_builder.mk_eq_refl(lhs);
new_type = instantiate(abstract_local(new_type, *major), refl);
} else {
// type does not depend on the *major.
// So, the motive is just (fun rhs, type), and
// new_type just replaces rhs with lhs.
use_drec = false;
motive = Fun(rhs, type);
new_type = instantiate(abstract_local(type, rhs), lhs);
}
expr minor = cast(e, new_type, tail(deps), eqs);
if (use_drec) {
return m_builder.mk_eq_drec(motive, minor, *major);
} else {
return m_builder.mk_eq_rec(motive, minor, *major);
}
}
}
bool has_cast(buffer<congr_arg_kind> const & kinds) {
return std::find(kinds.begin(), kinds.end(), congr_arg_kind::Cast) != kinds.end();
}
/** \brief Create simple congruence theorem using just congr, congr_arg, and congr_fun lemmas.
\pre There are no "cast" arguments. */
expr mk_simple_congr_proof(expr const & fn, buffer<expr> const & lhss,
buffer<optional<expr>> const & eqs, buffer<congr_arg_kind> const & kinds) {
lean_assert(!has_cast(kinds));
unsigned i = 0;
for (; i < kinds.size(); i++) {
if (kinds[i] != congr_arg_kind::Fixed)
break;
}
expr g = mk_app(fn, i, lhss.data());
if (i == kinds.size())
return m_builder.mk_eq_refl(g);
lean_assert(kinds[i] == congr_arg_kind::Eq);
lean_assert(eqs[i]);
expr pr = m_builder.mk_congr_arg(g, *eqs[i]);
i++;
for (; i < kinds.size(); i++) {
if (kinds[i] == congr_arg_kind::Eq) {
pr = m_builder.mk_congr(pr, *eqs[i]);
} else {
lean_assert(kinds[i] == congr_arg_kind::Fixed);
pr = m_builder.mk_congr_fun(pr, lhss[i]);
}
}
return pr;
}
/** \brief Given a the set of hypotheses \c eqs, build a proof for <tt>lhs = rhs</tt> using \c eq.drec and \c eqs.
\remark eqs are the proofs for the Eq arguments.
\remark This is an auxiliary method used by mk_congr_simp. */
expr mk_congr_proof(unsigned i, expr const & lhs, expr const & rhs, buffer<optional<expr>> const & eqs) {
if (i == eqs.size()) {
return m_builder.mk_eq_refl(rhs);
} else if (!eqs[i]) {
return mk_congr_proof(i+1, lhs, rhs, eqs);
} else {
expr major = *eqs[i];
expr x_1, x_2;
lean_verify(is_eq(mlocal_type(major), x_1, x_2));
lean_assert(is_local(x_1));
lean_assert(is_local(x_2));
expr motive_eq = m_builder.mk_eq(lhs, rhs);
expr motive = Fun(x_2, Fun(major, motive_eq));
// We compute the new_rhs by replacing x_2 with x_1 and major with (eq.refl x_1) in rhs.
expr new_rhs = instantiate(abstract_local(rhs, x_2), x_1);
expr x1_refl = m_builder.mk_eq_refl(x_1);
new_rhs = instantiate(abstract_local(new_rhs, major), x1_refl);
expr minor = mk_congr_proof(i+1, lhs, new_rhs, eqs);
return m_builder.mk_eq_drec(motive, minor, major);
}
}
void trace_too_many_arguments(expr const & fn, unsigned nargs) {
lean_trace("congruence_manager", tout() << "failed to generate lemma for (" << fn << ") with " << nargs
<< " arguments, too many arguments\n";);
}
void trace_app_builder_failure(expr const & fn) {
lean_trace("congruence_manager", tout() << "failed to generate lemma for (" << fn << "), "
<< " failed to build proof (enable 'trace.app_builder' for details\n";);
}
/** \brief Create a congruence lemma that is useful for the simplifier.
In this kind of lemma, if the i-th argument is a Cast argument, then the lemma
contains an input a_i representing the i-th argument in the left-hand-side, and
it appears with a cast (e.g., eq.drec ... a_i ...) in the right-hand-side.
The idea is that the right-hand-side of this lemma "tells" the simplifier
how the resulting term looks like. */
optional<result> mk_congr_simp(expr const & fn, buffer<param_info> const & pinfos, buffer<congr_arg_kind> const & kinds) {
try {
expr fn_type = relaxed_whnf(infer(fn));
name e_name("e");
buffer<expr> lhss;
buffer<expr> rhss; // it contains the right-hand-side argument
buffer<optional<expr>> eqs; // for Eq args, it contains the equality
buffer<expr> hyps; // contains lhss + rhss + eqs
for (unsigned i = 0; i < pinfos.size(); i++) {
if (!is_pi(fn_type)) {
trace_too_many_arguments(fn, pinfos.size());
return optional<result>();
}
expr lhs = m_ctx.mk_tmp_local(binding_name(fn_type), binding_domain(fn_type));
lhss.push_back(lhs);
hyps.push_back(lhs);
switch (kinds[i]) {
case congr_arg_kind::Eq: {
expr rhs = m_ctx.mk_tmp_local(binding_name(fn_type), binding_domain(fn_type));
expr eq_type = m_builder.mk_eq(lhs, rhs);
rhss.push_back(rhs);
expr eq = m_ctx.mk_tmp_local(e_name.append_after(eqs.size()+1), eq_type);
eqs.push_back(some_expr(eq));
hyps.push_back(rhs);
hyps.push_back(eq);
break;
}
case congr_arg_kind::Fixed:
rhss.push_back(lhs);
eqs.push_back(none_expr());
break;
case congr_arg_kind::FixedNoParam:
lean_unreachable(); // TODO(Leo): not implemented yet
break;
case congr_arg_kind::Cast: {
expr rhs_type = mlocal_type(lhs);
rhs_type = instantiate_rev(abstract_locals(rhs_type, lhss.size()-1, lhss.data()), rhss.size(), rhss.data());
expr rhs = cast(lhs, rhs_type, pinfos[i].get_dependencies(), eqs);
rhss.push_back(rhs);
eqs.push_back(none_expr());
break;
}}
fn_type = relaxed_whnf(instantiate(binding_body(fn_type), lhs));
}
expr lhs = mk_app(fn, lhss);
expr rhs = mk_app(fn, rhss);
expr eq = m_builder.mk_eq(lhs, rhs);
expr congr_type = Pi(hyps, eq);
expr congr_proof;
if (has_cast(kinds)) {
congr_proof = mk_congr_proof(0, lhs, rhs, eqs);
} else {
congr_proof = mk_simple_congr_proof(fn, lhss, eqs, kinds);
}
congr_proof = Fun(hyps, congr_proof);
return optional<result>(congr_type, congr_proof, to_list(kinds));
} catch (app_builder_exception &) {
trace_app_builder_failure(fn);
return optional<result>();
}
}
/** \brief Create a congruence lemma for the congruence closure module.
In this kind of lemma, if the i-th argument is a Cast argument, then the lemma
contains two inputs a_i and b_i representing the i-th argument in the left-hand-side and
right-hand-side.
This lemma is based on the congruence lemma for the simplifier.
It uses subsinglenton elimination to show that the congr-simp lemma right-hand-side
is equal to the right-hand-side of this lemma. */
optional<result> mk_congr(expr const & fn, optional<result> const & simp_lemma,
buffer<param_info> const & pinfos, buffer<congr_arg_kind> const & kinds) {
try {
expr fn_type1 = whnf(infer(fn));
expr fn_type2 = fn_type1;
name e_name("e");
buffer<expr> lhss;
buffer<expr> rhss; // it contains the right-hand-side argument
buffer<optional<expr>> eqs; // for Eq args, it contains the equality
buffer<expr> hyps; // contains lhss + rhss + eqs
buffer<expr> simp_lemma_args;
for (unsigned i = 0; i < pinfos.size(); i++) {
if (!is_pi(fn_type1)) {
trace_too_many_arguments(fn, pinfos.size());
return optional<result>();
}
expr lhs = m_ctx.mk_tmp_local(binding_name(fn_type1), binding_domain(fn_type1));
expr rhs;
lhss.push_back(lhs);
hyps.push_back(lhs);
simp_lemma_args.push_back(lhs);
switch (kinds[i]) {
case congr_arg_kind::Eq: {
lean_assert(m_ctx.is_def_eq(binding_domain(fn_type1), binding_domain(fn_type2)));
rhs = m_ctx.mk_tmp_local(binding_name(fn_type2), binding_domain(fn_type2));
expr eq_type = m_builder.mk_eq(lhs, rhs);
rhss.push_back(rhs);
expr eq = m_ctx.mk_tmp_local(e_name.append_after(eqs.size()+1), eq_type);
eqs.push_back(some_expr(eq));
hyps.push_back(rhs);
hyps.push_back(eq);
simp_lemma_args.push_back(rhs);
simp_lemma_args.push_back(eq);
break;
}
case congr_arg_kind::Fixed:
rhs = lhs;
rhss.push_back(rhs);
eqs.push_back(none_expr());
break;
case congr_arg_kind::FixedNoParam:
lean_unreachable(); // TODO(Leo): not implemented yet
break;
case congr_arg_kind::Cast: {
rhs = m_ctx.mk_tmp_local(binding_name(fn_type2), binding_domain(fn_type2));
rhss.push_back(rhs);
eqs.push_back(none_expr());
hyps.push_back(rhs);
break;
}}
fn_type1 = whnf(instantiate(binding_body(fn_type1), lhs));
fn_type2 = whnf(instantiate(binding_body(fn_type2), rhs));
}
expr pr1 = mk_app(simp_lemma->get_proof(), simp_lemma_args);
expr type1 = simp_lemma->get_type();
while (is_pi(type1))
type1 = binding_body(type1);
type1 = instantiate_rev(type1, simp_lemma_args.size(), simp_lemma_args.data());
expr lhs1, rhs1;
lean_verify(is_eq(type1, lhs1, rhs1));
// build proof2
expr rhs2 = mk_app(fn, rhss);
expr eq = m_builder.mk_eq(lhs1, rhs2);
expr congr_type = Pi(hyps, eq);
// build proof that rhs1 = rhs2
unsigned i;
for (i = 0; i < kinds.size(); i++) {
if (kinds[i] == congr_arg_kind::Cast && !pinfos[i].is_prop())
break;
}
if (i == kinds.size()) {
// rhs1 and rhs2 are definitionally equal
expr congr_proof = Fun(hyps, pr1);
return optional<result>(congr_type, congr_proof, to_list(kinds));
}
buffer<expr> rhss1;
get_app_args(rhs1, rhss1);
lean_assert(rhss.size() == rhss1.size());
expr a = mk_app(fn, i, rhss1.data());
expr pr2 = m_builder.mk_eq_refl(a);
for (; i < kinds.size(); i++) {
if (kinds[i] == congr_arg_kind::Cast && !pinfos[i].is_prop()) {
lean_assert(pinfos[i].is_subsingleton());
expr r1 = rhss1[i];
expr r2 = rhss[i];
expr r1_eq_r2 = m_builder.mk_app(get_subsingleton_elim_name(), r1, r2);
pr2 = m_builder.mk_congr(pr2, r1_eq_r2);
} else {
pr2 = m_builder.mk_congr_fun(pr2, rhss[i]);
}
}
expr congr_proof = Fun(hyps, m_builder.mk_eq_trans(pr1, pr2));
return optional<result>(congr_type, congr_proof, to_list(kinds));
} catch (app_builder_exception &) {
trace_app_builder_failure(fn);
return optional<result>();
}
}
public:
imp(app_builder & b, fun_info_manager & fm):
m_builder(b), m_fmanager(fm), m_ctx(fm.ctx()),
m_relation_info_getter(mk_relation_info_getter(fm.ctx().env())) {}
type_context & ctx() { return m_ctx; }
optional<result> mk_congr_simp(expr const & fn, unsigned nargs) {
auto r = m_simp_cache.find(key(fn, nargs));
if (r != m_simp_cache.end())
return optional<result>(r->second);
fun_info finfo = m_fmanager.get(fn, nargs);
list<unsigned> const & result_deps = finfo.get_dependencies();
buffer<congr_arg_kind> kinds;
buffer<param_info> pinfos;
to_buffer(finfo.get_params_info(), pinfos);
kinds.resize(pinfos.size(), congr_arg_kind::Eq);
for (unsigned i = 0; i < pinfos.size(); i++) {
if (std::find(result_deps.begin(), result_deps.end(), i) != result_deps.end()) {
kinds[i] = congr_arg_kind::Fixed;
} else if (pinfos[i].is_subsingleton()) {
// See comment at mk_congr.
if (!pinfos[i].is_prop() && pinfos[i].is_dep())
kinds[i] = congr_arg_kind::Fixed;
else
kinds[i] = congr_arg_kind::Cast;
} else if (pinfos[i].is_inst_implicit()) {
lean_assert(!pinfos[i].is_subsingleton());
kinds[i] = congr_arg_kind::Fixed;
}
}
for (unsigned i = 0; i < pinfos.size(); i++) {
for (unsigned j = i+1; j < pinfos.size(); j++) {
auto j_deps = pinfos[j].get_dependencies();
if (std::find(j_deps.begin(), j_deps.end(), i) != j_deps.end() &&
kinds[j] == congr_arg_kind::Eq) {
// We must fix i because there is a j that depends on i,
// and j is not fixed nor a cast-fixed.
kinds[i] = congr_arg_kind::Fixed;
break;
}
}
}
auto new_r = mk_congr_simp(fn, pinfos, kinds);
if (new_r) {
m_simp_cache.insert(mk_pair(key(fn, nargs), *new_r));
return new_r;
} else if (has_cast(kinds)) {
// remove casts and try again
for (unsigned i = 0; i < kinds.size(); i++) {
if (kinds[i] == congr_arg_kind::Cast)
kinds[i] = congr_arg_kind::Fixed;
}
auto new_r = mk_congr_simp(fn, pinfos, kinds);
if (new_r) {
m_simp_cache.insert(mk_pair(key(fn, nargs), *new_r));
return new_r;
} else {
return new_r;
}
} else {
return new_r;
}
}
optional<result> mk_congr_simp(expr const & fn) {
fun_info finfo = m_fmanager.get(fn);
return mk_congr_simp(fn, finfo.get_arity());
}
optional<result> mk_congr(expr const & fn, unsigned nargs) {
auto r = m_cache.find(key(fn, nargs));
if (r != m_cache.end())
return optional<result>(r->second);
fun_info finfo = m_fmanager.get(fn, nargs);
optional<result> simp_lemma = mk_congr_simp(fn, nargs);
if (!simp_lemma)
return optional<result>();
buffer<congr_arg_kind> kinds;
buffer<param_info> pinfos;
to_buffer(simp_lemma->get_arg_kinds(), kinds);
to_buffer(finfo.get_params_info(), pinfos);
// For congr lemmas we have the following restriction:
// if a Cast arg is subsingleton, it is not a proposition,
// and it is a dependent argument, then we mark it as fixed.
// This restriction doesn't affect the standard library,
// but it simplifies the implementation.
lean_assert(kinds.size() == pinfos.size());
bool has_cast = false;
for (unsigned i = 0; i < kinds.size(); i++) {
if (!pinfos[i].is_prop() && pinfos[i].is_subsingleton() && pinfos[i].is_dep()) {
kinds[i] = congr_arg_kind::Fixed;
}
if (kinds[i] == congr_arg_kind::Cast)
has_cast = true;
}
if (!has_cast) {
m_cache.insert(mk_pair(key(fn, nargs), *simp_lemma));
return simp_lemma; // simp_lemma will be identical to regular congr lemma
}
auto new_r = mk_congr(fn, simp_lemma, pinfos, kinds);
if (new_r)
m_cache.insert(mk_pair(key(fn, nargs), *new_r));
return new_r;
}
optional<result> mk_congr(expr const & fn) {
fun_info finfo = m_fmanager.get(fn);
return mk_congr(fn, finfo.get_arity());
}
/** \brief Given an equivalence relation \c R, create the congruence lemma
forall a1 a2 b1 b2, R a1 a2 -> R b1 b2 -> (R a1 b1 <-> R a2 b2)
If is_iff == false, then, it creates the lemma
forall a1 a2 b1 b2, R a1 a2 -> R b1 b2 -> (R a1 b1 = R a2 b2)
Propositional extensionality is used when is_iff == false */
optional<result> mk_rel_congr(expr const & R, bool is_iff) {
try {
if (!is_constant(R))
return optional<result>();
name const & R_name = const_name(R);
auto info = m_relation_info_getter(R_name);
if (!info)
return optional<result>();
unsigned arity = info->get_arity();
key k(R, arity);
auto r = m_rel_cache[is_iff].find(k);
if (r != m_rel_cache[is_iff].end())
return optional<result>(r->second);
buffer<expr> hyps;
buffer<congr_arg_kind> kinds;
expr a1, b1, a2, b2;
expr H1, H2;
expr R_type = infer(R);
for (unsigned i = 0; i < arity; i++) {
R_type = relaxed_whnf(R_type);
if (!is_pi(R_type))
return optional<result>();
expr h = m_ctx.mk_tmp_local(binding_name(R_type), binding_domain(R_type));
if (i == info->get_lhs_pos()) {
a1 = h;
a2 = m_ctx.mk_tmp_local(binding_name(R_type), binding_domain(R_type));
H1 = m_ctx.mk_tmp_local("H1", m_builder.mk_rel(R_name, a1, a2));
hyps.push_back(a1);
hyps.push_back(a2);
hyps.push_back(H1);
kinds.push_back(congr_arg_kind::Eq);
} else if (i == info->get_rhs_pos()) {
b1 = h;
b2 = m_ctx.mk_tmp_local(binding_name(R_type), binding_domain(R_type));
H2 = m_ctx.mk_tmp_local("H2", m_builder.mk_rel(R_name, b1, b2));
hyps.push_back(b1);
hyps.push_back(b2);
hyps.push_back(H2);
kinds.push_back(congr_arg_kind::Eq);
} else {
hyps.push_back(h);
kinds.push_back(congr_arg_kind::Fixed);
}
R_type = instantiate(binding_body(R_type), h);
}
expr lhs = m_builder.mk_rel(R_name, a1, b1);
expr rhs = m_builder.mk_rel(R_name, a2, b2);
// (H1 : R a1 a2) -> (H2 : R b1 b2) -> (R a1 b1 <-> R a2 b2)
expr type = is_iff ? m_builder.mk_iff(lhs, rhs) : m_builder.mk_eq(lhs, rhs);
type = Pi(hyps, type);
/* Proof:
iff.intro
(λ H : R a1 b1, trans (symm H1) (trans H H2))
(λ H : R a2 b2, trans H1 (trans H (symm H2)))
*/
expr H;
H = m_ctx.mk_tmp_local(lhs);
expr p1 = Fun(H, m_builder.mk_trans(R_name, m_builder.mk_symm(R_name, H1), m_builder.mk_trans(R_name, H, H2)));
H = m_ctx.mk_tmp_local(rhs);
expr p2 = Fun(H, m_builder.mk_trans(R_name, H1, m_builder.mk_trans(R_name, H, m_builder.mk_symm(R_name, H2))));
expr pr = m_builder.mk_app(get_iff_intro_name(), p1, p2);
if (!is_iff)
pr = m_builder.mk_app(get_propext_name(), pr);
pr = Fun(hyps, pr);
result res(type, pr, to_list(kinds));
m_rel_cache[is_iff].insert(mk_pair(k, res));
return optional<result>(res);
} catch (app_builder_exception &) {
trace_app_builder_failure(R);
return optional<result>();
}
}
optional<result> mk_rel_iff_congr(expr const & R) {
return mk_rel_congr(R, true);
}
optional<result> mk_rel_eq_congr(expr const & R) {
return mk_rel_congr(R, false);
}
};
congr_lemma_manager::congr_lemma_manager(app_builder & b, fun_info_manager & fm):
m_ptr(new imp(b, fm)) {
}
congr_lemma_manager::~congr_lemma_manager() {
}
type_context & congr_lemma_manager::ctx() { return m_ptr->ctx(); }
auto congr_lemma_manager::mk_congr_simp(expr const & fn) -> optional<result> {
return m_ptr->mk_congr_simp(fn);
}
auto congr_lemma_manager::mk_congr_simp(expr const & fn, unsigned nargs) -> optional<result> {
return m_ptr->mk_congr_simp(fn, nargs);
}
auto congr_lemma_manager::mk_congr(expr const & fn) -> optional<result> {
return m_ptr->mk_congr(fn);
}
auto congr_lemma_manager::mk_congr(expr const & fn, unsigned nargs) -> optional<result> {
return m_ptr->mk_congr(fn, nargs);
}
auto congr_lemma_manager::mk_rel_iff_congr(expr const & R) -> optional<result> {
return m_ptr->mk_rel_iff_congr(R);
}
auto congr_lemma_manager::mk_rel_eq_congr(expr const & R) -> optional<result> {
return m_ptr->mk_rel_eq_congr(R);
}
void initialize_congr_lemma_manager() {
register_trace_class("congruence_manager");
}
void finalize_congr_lemma_manager() {
}
}