2015-01-02 18:46:04 -05:00
|
|
|
-- Copyright (c) 2015 Jakob von Raumer. All rights reserved.
|
|
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
-- Authors: Jakob von Raumer
|
|
|
|
-- Truncation properties of truncatedness
|
|
|
|
|
|
|
|
import types.pi
|
|
|
|
|
|
|
|
open truncation sigma sigma.ops pi function eq equiv
|
|
|
|
|
|
|
|
namespace truncation
|
|
|
|
|
|
|
|
definition is_contr.sigma_char (A : Type) :
|
|
|
|
(Σ (center : A), Π (a : A), center = a) ≃ (is_contr A) :=
|
2015-01-02 19:52:12 -05:00
|
|
|
begin
|
|
|
|
fapply equiv.mk,
|
|
|
|
intro S, apply is_contr.mk, exact S.2,
|
|
|
|
fapply is_equiv.adjointify,
|
|
|
|
intro H, apply sigma.mk, exact (@contr A H),
|
|
|
|
intro H, apply (is_trunc.rec_on H), intro Hint,
|
|
|
|
apply (contr_internal.rec_on Hint), intros (H1, H2),
|
|
|
|
apply idp,
|
|
|
|
intro S, apply (sigma.rec_on S), intros (H1, H2),
|
|
|
|
apply idp,
|
|
|
|
end
|
2015-01-02 18:46:04 -05:00
|
|
|
|
2015-01-02 19:52:12 -05:00
|
|
|
set_option pp.implicit true
|
2015-01-02 18:46:04 -05:00
|
|
|
definition is_trunc.pi_char (n : trunc_index) (A : Type) :
|
|
|
|
(Π (x y : A), is_trunc n (x = y)) ≃ (is_trunc (n .+1) A) :=
|
2015-01-02 19:52:12 -05:00
|
|
|
begin
|
|
|
|
fapply equiv.mk,
|
2015-02-06 17:27:56 -08:00
|
|
|
intro H, apply is_trunc_succ,
|
2015-01-02 19:52:12 -05:00
|
|
|
fapply is_equiv.adjointify,
|
2015-02-06 17:27:56 -08:00
|
|
|
intros (H, x, y), apply succ_is_trunc,
|
2015-01-02 19:52:12 -05:00
|
|
|
intro H, apply (is_trunc.rec_on H), intro Hint, apply idp,
|
|
|
|
intro P,
|
|
|
|
exact sorry,
|
|
|
|
end
|
2015-01-02 18:46:04 -05:00
|
|
|
|
|
|
|
definition is_trunc_is_hprop {n : trunc_index} :
|
|
|
|
Π (A : Type), is_hprop (is_trunc n A) :=
|
|
|
|
begin
|
|
|
|
apply (trunc_index.rec_on n),
|
|
|
|
intro A,
|
|
|
|
apply trunc_equiv, apply equiv.to_is_equiv,
|
|
|
|
apply is_contr.sigma_char,
|
|
|
|
apply (@is_hprop.mk), intros,
|
|
|
|
fapply sigma.path, apply x.2,
|
|
|
|
apply (@is_hprop.elim),
|
|
|
|
apply trunc_pi, intro a,
|
|
|
|
apply is_hprop.mk, intros (w, z),
|
|
|
|
assert (H : is_hset A),
|
|
|
|
apply trunc_succ, apply trunc_succ,
|
|
|
|
apply is_contr.mk, exact y.2,
|
|
|
|
fapply (@is_hset.elim A _ _ _ w z),
|
|
|
|
intros (n', IH, A),
|
|
|
|
apply trunc_equiv,
|
|
|
|
apply equiv.to_is_equiv,
|
|
|
|
apply is_trunc.pi_char,
|
|
|
|
end
|
|
|
|
|
|
|
|
end truncation
|