lean2/src/frontends/lean/decl_cmds.cpp

1338 lines
55 KiB
C++
Raw Normal View History

/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <iostream>
#include <algorithm>
#include "util/sstream.h"
#include "util/timeit.h"
#include "kernel/type_checker.h"
#include "kernel/abstract.h"
#include "kernel/replace_fn.h"
#include "kernel/for_each_fn.h"
#include "library/scoped_ext.h"
#include "library/aliases.h"
#include "library/private.h"
#include "library/protected.h"
#include "library/noncomputable.h"
#include "library/placeholder.h"
#include "library/locals.h"
#include "library/explicit.h"
#include "library/abbreviation.h"
#include "library/definitional/equations.h"
#include "library/error_handling/error_handling.h"
#include "frontends/lean/parser.h"
#include "frontends/lean/util.h"
#include "frontends/lean/tokens.h"
#include "frontends/lean/decl_attributes.h"
#include "frontends/lean/update_environment_exception.h"
#include "frontends/lean/nested_declaration.h"
// We don't display profiling information for declarations that take less than 0.01 secs
#ifndef LEAN_PROFILE_THRESHOLD
#define LEAN_PROFILE_THRESHOLD 0.01
#endif
namespace lean {
static environment declare_universe(parser & p, environment env, name const & n, bool local) {
if (local) {
p.add_local_level(n, mk_param_univ(n), local);
} else if (in_section(env)) {
p.add_local_level(n, mk_param_univ(n), false);
} else {
name const & ns = get_namespace(env);
name full_n = ns + n;
env = module::add_universe(env, full_n);
if (!ns.is_anonymous())
env = add_level_alias(env, n, full_n);
}
return env;
}
static environment universes_cmd_core(parser & p, bool local) {
if (!p.curr_is_identifier())
throw parser_error("invalid 'universes' command, identifier expected", p.pos());
environment env = p.env();
while (p.curr_is_identifier()) {
name n = p.get_name_val();
p.next();
env = declare_universe(p, env, n, local);
}
return env;
}
static environment universe_cmd(parser & p) {
if (p.curr_is_token(get_variables_tk())) {
p.next();
return universes_cmd_core(p, true);
} else {
bool local = false;
if (p.curr_is_token(get_variable_tk())) {
p.next();
local = true;
}
name n = p.check_id_next("invalid 'universe' command, identifier expected");
return declare_universe(p, p.env(), n, local);
}
}
static environment universes_cmd(parser & p) {
return universes_cmd_core(p, false);
}
bool parse_univ_params(parser & p, buffer<name> & ps) {
if (p.curr_is_token(get_llevel_curly_tk())) {
p.next();
while (!p.curr_is_token(get_rcurly_tk())) {
name l = p.check_id_next("invalid universe parameter, identifier expected");
p.add_local_level(l, mk_param_univ(l));
ps.push_back(l);
}
p.next();
return true;
} else{
return false;
}
}
void update_univ_parameters(buffer<name> & ls_buffer, name_set const & found, parser const & p) {
unsigned old_sz = ls_buffer.size();
found.for_each([&](name const & n) {
if (std::find(ls_buffer.begin(), ls_buffer.begin() + old_sz, n) == ls_buffer.begin() + old_sz)
ls_buffer.push_back(n);
});
std::sort(ls_buffer.begin(), ls_buffer.end(), [&](name const & n1, name const & n2) {
return p.get_local_level_index(n1) < p.get_local_level_index(n2);
});
}
enum class variable_kind { Constant, Parameter, Variable, Axiom };
static void check_parameter_type(parser & p, name const & n, expr const & type, pos_info const & pos) {
for_each(type, [&](expr const & e, unsigned) {
if (is_local(e) && p.is_local_variable(e))
throw parser_error(sstream() << "invalid parameter declaration '" << n << "', it depends on " <<
"variable '" << local_pp_name(e) << "'", pos);
return true;
});
}
static environment ensure_decl_namespaces(environment const & env, name const & full_n) {
if (full_n.is_atomic())
return env;
return add_namespace(env, full_n.get_prefix());
}
static environment declare_var(parser & p, environment env,
name const & n, level_param_names const & ls, expr const & type,
variable_kind k, optional<binder_info> const & _bi, pos_info const & pos,
bool is_protected) {
binder_info bi;
if (_bi) bi = *_bi;
if (k == variable_kind::Parameter || k == variable_kind::Variable) {
if (k == variable_kind::Parameter) {
check_in_section(p);
check_parameter_type(p, n, type, pos);
}
if (p.get_local(n))
throw parser_error(sstream() << "invalid parameter/variable declaration, '"
<< n << "' has already been declared", pos);
name u = p.mk_fresh_name();
expr l = p.save_pos(mk_local(u, n, type, bi), pos);
if (k == variable_kind::Parameter)
p.add_parameter(n, l);
else
2015-12-10 18:11:23 +00:00
p.add_variable(n, l);
return env;
} else {
lean_assert(k == variable_kind::Constant || k == variable_kind::Axiom);
name const & ns = get_namespace(env);
name full_n = ns + n;
expr new_type = postprocess(env, type);
if (k == variable_kind::Axiom) {
env = module::add(env, check(env, mk_axiom(full_n, ls, new_type)));
p.add_decl_index(full_n, pos, get_axiom_tk(), new_type);
} else {
env = module::add(env, check(env, mk_constant_assumption(full_n, ls, new_type)));
p.add_decl_index(full_n, pos, get_variable_tk(), new_type);
}
if (!ns.is_anonymous()) {
if (is_protected)
env = add_expr_alias(env, get_protected_shortest_name(full_n), full_n);
else
env = add_expr_alias(env, n, full_n);
}
if (is_protected)
env = add_protected(env, full_n);
env = ensure_decl_namespaces(env, full_n);
return env;
}
}
/** \brief If we are in a section, then add the new local levels to it. */
static void update_local_levels(parser & p, level_param_names const & new_ls, bool is_variable) {
for (auto const & l : new_ls)
p.add_local_level(l, mk_param_univ(l), is_variable);
}
optional<binder_info> parse_binder_info(parser & p, variable_kind k) {
optional<binder_info> bi = p.parse_optional_binder_info();
if (bi && k != variable_kind::Parameter && k != variable_kind::Variable)
parser_error("invalid binder annotation, it can only be used to declare variables/parameters", p.pos());
return bi;
}
static void check_variable_kind(parser & p, variable_kind k) {
if (in_section(p.env())) {
if (k == variable_kind::Axiom || k == variable_kind::Constant)
throw parser_error("invalid declaration, 'constant/axiom' cannot be used in sections",
p.pos());
} else if (!in_section(p.env()) && k == variable_kind::Parameter) {
throw parser_error("invalid declaration, 'parameter/hypothesis/conjecture' "
"can only be used in sections", p.pos());
}
}
static void update_local_binder_info(parser & p, variable_kind k, name const & n,
optional<binder_info> const & bi, pos_info const & pos) {
binder_info new_bi;
if (bi) new_bi = *bi;
if (k == variable_kind::Parameter) {
if (p.is_local_variable(n))
throw parser_error(sstream() << "invalid parameter binder type update, '"
<< n << "' is a variable", pos);
if (!p.update_local_binder_info(n, new_bi))
throw parser_error(sstream() << "invalid parameter binder type update, '"
<< n << "' is not a parameter", pos);
} else {
if (!p.update_local_binder_info(n, new_bi) || !p.is_local_variable(n))
throw parser_error(sstream() << "invalid variable binder type update, '"
<< n << "' is not a variable", pos);
}
}
static bool curr_is_binder_annotation(parser & p) {
return p.curr_is_token(get_lparen_tk()) || p.curr_is_token(get_lcurly_tk()) ||
p.curr_is_token(get_ldcurly_tk()) || p.curr_is_token(get_lbracket_tk());
}
static environment variable_cmd_core(parser & p, variable_kind k, bool is_protected = false) {
check_variable_kind(p, k);
auto pos = p.pos();
optional<binder_info> bi = parse_binder_info(p, k);
name n = p.check_id_next("invalid declaration, identifier expected");
buffer<name> ls_buffer;
if (p.curr_is_token(get_llevel_curly_tk()) && (k == variable_kind::Parameter || k == variable_kind::Variable))
throw parser_error("invalid declaration, only constants/axioms can be universe polymorphic", p.pos());
optional<parser::local_scope> scope1;
if (k == variable_kind::Constant || k == variable_kind::Axiom)
scope1.emplace(p);
parse_univ_params(p, ls_buffer);
expr type;
if (!p.curr_is_token(get_colon_tk())) {
if (!curr_is_binder_annotation(p) && (k == variable_kind::Parameter || k == variable_kind::Variable)) {
p.parse_close_binder_info(bi);
update_local_binder_info(p, k, n, bi, pos);
return p.env();
} else {
buffer<expr> ps;
unsigned rbp = 0;
auto lenv = p.parse_binders(ps, rbp);
p.check_token_next(get_colon_tk(), "invalid declaration, ':' expected");
type = p.parse_scoped_expr(ps, lenv);
type = Pi(ps, type, p);
}
} else {
p.next();
type = p.parse_expr();
}
p.parse_close_binder_info(bi);
check_command_period_or_eof(p);
level_param_names ls;
if (ls_buffer.empty()) {
ls = to_level_param_names(collect_univ_params(type));
} else {
update_univ_parameters(ls_buffer, collect_univ_params(type), p);
ls = to_list(ls_buffer.begin(), ls_buffer.end());
}
level_param_names new_ls;
list<expr> ctx = p.locals_to_context();
std::tie(type, new_ls) = p.elaborate_type(type, ctx);
if (k == variable_kind::Variable || k == variable_kind::Parameter)
update_local_levels(p, new_ls, k == variable_kind::Variable);
return declare_var(p, p.env(), n, append(ls, new_ls), type, k, bi, pos, is_protected);
}
static environment variable_cmd(parser & p) {
return variable_cmd_core(p, variable_kind::Variable);
}
static environment axiom_cmd(parser & p) {
return variable_cmd_core(p, variable_kind::Axiom);
}
static environment constant_cmd(parser & p) {
return variable_cmd_core(p, variable_kind::Constant);
}
static environment parameter_cmd(parser & p) {
return variable_cmd_core(p, variable_kind::Parameter);
}
static environment variables_cmd_core(parser & p, variable_kind k, bool is_protected = false) {
check_variable_kind(p, k);
auto pos = p.pos();
environment env = p.env();
optional<binder_info> bi = parse_binder_info(p, k);
buffer<name> ids;
while (p.curr_is_identifier()) {
name id = p.get_name_val();
p.next();
ids.push_back(id);
}
if (p.curr_is_token(get_colon_tk())) {
p.next();
} else {
if (k == variable_kind::Parameter || k == variable_kind::Variable) {
p.parse_close_binder_info(bi);
for (name const & id : ids) {
update_local_binder_info(p, k, id, bi, pos);
}
if (curr_is_binder_annotation(p))
return variables_cmd_core(p, k);
else
return env;
} else {
throw parser_error("invalid variables/constants/axioms declaration, ':' expected", pos);
}
}
optional<parser::local_scope> scope1;
if (k == variable_kind::Constant || k == variable_kind::Axiom)
scope1.emplace(p);
expr type = p.parse_expr();
p.parse_close_binder_info(bi);
level_param_names ls = to_level_param_names(collect_univ_params(type));
list<expr> ctx = p.locals_to_context();
for (auto id : ids) {
// Hack: to make sure we get different universe parameters for each parameter.
// Alternative: elaborate once and copy types replacing universes in new_ls.
level_param_names new_ls;
expr new_type;
check_command_period_open_binder_or_eof(p);
std::tie(new_type, new_ls) = p.elaborate_type(type, ctx);
if (k == variable_kind::Variable || k == variable_kind::Parameter)
update_local_levels(p, new_ls, k == variable_kind::Variable);
new_ls = append(ls, new_ls);
env = declare_var(p, env, id, new_ls, new_type, k, bi, pos, is_protected);
}
if (curr_is_binder_annotation(p)) {
if (k == variable_kind::Constant || k == variable_kind::Axiom) {
// Hack: temporarily update the parser environment.
// We must do that to be able to process
// constants (A : Type) (a : A)
parser::local_scope scope2(p, env);
return variables_cmd_core(p, k);
} else {
return variables_cmd_core(p, k);
}
}
return env;
}
static environment variables_cmd(parser & p) {
return variables_cmd_core(p, variable_kind::Variable);
}
static environment parameters_cmd(parser & p) {
return variables_cmd_core(p, variable_kind::Parameter);
}
static environment constants_cmd(parser & p) {
return variables_cmd_core(p, variable_kind::Constant);
}
static environment axioms_cmd(parser & p) {
return variables_cmd_core(p, variable_kind::Axiom);
}
static void check_end_of_theorem(parser const & p) {
if (!p.curr_is_command_like())
throw parser_error("':=', '.', command, script, or end-of-file expected", p.pos());
}
static void erase_local_binder_info(buffer<expr> & ps) {
for (expr & p : ps)
p = update_local(p, binder_info());
}
static bool is_curr_with_or_comma_or_bar(parser & p) {
return p.curr_is_token(get_with_tk()) || p.curr_is_token(get_comma_tk()) || p.curr_is_token(get_bar_tk());
}
/**
For convenience, the left-hand-side of a recursive equation may contain
undeclared variables.
We use parser::undef_id_to_local_scope to force the parser to create a local constant for
each undefined identifier.
This method validates occurrences of these variables. They can only occur as an application
or macro argument.
*/
static void validate_equation_lhs(parser const & p, expr const & lhs, buffer<expr> const & locals) {
if (is_app(lhs)) {
validate_equation_lhs(p, app_fn(lhs), locals);
validate_equation_lhs(p, app_arg(lhs), locals);
} else if (is_macro(lhs)) {
for (unsigned i = 0; i < macro_num_args(lhs); i++)
validate_equation_lhs(p, macro_arg(lhs, i), locals);
} else if (!is_local(lhs)) {
for_each(lhs, [&](expr const & e, unsigned) {
if (is_local(e) &&
std::any_of(locals.begin(), locals.end(), [&](expr const & local) {
return mlocal_name(e) == mlocal_name(local);
})) {
throw parser_error(sstream() << "invalid occurrence of variable '" << mlocal_name(e) <<
"' in the left-hand-side of recursive equation", p.pos_of(lhs));
}
return has_local(e);
});
}
}
/**
\brief Merge multiple occurrences of a variable in the left-hand-side of a recursive equation.
\see validate_equation_lhs
*/
static expr merge_equation_lhs_vars(expr const & lhs, buffer<expr> & locals) {
expr_map<expr> m;
unsigned j = 0;
for (unsigned i = 0; i < locals.size(); i++) {
unsigned k;
for (k = 0; k < i; k++) {
if (mlocal_name(locals[k]) == mlocal_name(locals[i])) {
m.insert(mk_pair(locals[i], locals[k]));
break;
}
}
if (k == i) {
locals[j] = locals[i];
j++;
}
}
if (j == locals.size())
return lhs;
locals.shrink(j);
return replace(lhs, [&](expr const & e) {
if (!has_local(e))
return some_expr(e);
if (is_local(e)) {
auto it = m.find(e);
if (it != m.end())
return some_expr(it->second);
}
return none_expr();
});
}
[[ noreturn ]] static void throw_invalid_equation_lhs(name const & n, pos_info const & p) {
throw parser_error(sstream() << "invalid recursive equation, head symbol '"
<< n << "' in the left-hand-side does not correspond to function(s) being defined", p);
}
static bool is_eqn_prefix(parser & p, bool bar_only = false) {
return p.curr_is_token(get_bar_tk()) || (!bar_only && p.curr_is_token(get_comma_tk()));
}
static void check_eqn_prefix(parser & p) {
if (!is_eqn_prefix(p))
throw parser_error("invalid declaration, ',' or '|' expected", p.pos());
p.next();
}
static optional<expr> is_equation_fn(buffer<expr> const & fns, name const & fn_name) {
for (expr const & fn : fns) {
if (local_pp_name(fn) == fn_name)
return some_expr(fn);
}
return none_expr();
}
static expr get_equation_fn(buffer<expr> const & fns, name const & fn_name, pos_info const & lhs_pos) {
if (auto it = is_equation_fn(fns, fn_name))
return *it;
throw_invalid_equation_lhs(fn_name, lhs_pos);
}
static void parse_equations_core(parser & p, buffer<expr> const & fns, buffer<expr> & eqns, bool bar_only = false) {
for (expr const & fn : fns)
p.add_local(fn);
while (true) {
expr lhs;
unsigned prev_num_undef_ids = p.get_num_undef_ids();
buffer<expr> locals;
{
parser::undef_id_to_local_scope scope2(p);
buffer<expr> lhs_args;
auto lhs_pos = p.pos();
if (p.curr_is_token(get_explicit_tk())) {
p.next();
name fn_name = p.check_id_next("invalid recursive equation, identifier expected");
lhs_args.push_back(p.save_pos(mk_explicit(get_equation_fn(fns, fn_name, lhs_pos)), lhs_pos));
} else {
expr first = p.parse_expr(get_max_prec());
expr fn = first;
if (is_explicit(fn))
fn = get_explicit_arg(fn);
if (is_local(fn) && is_equation_fn(fns, local_pp_name(fn))) {
lhs_args.push_back(first);
} else if (fns.size() == 1) {
lhs_args.push_back(p.save_pos(mk_explicit(fns[0]), lhs_pos));
lhs_args.push_back(first);
} else {
throw parser_error("invalid recursive equation, head symbol in left-hand-side is not a constant",
lhs_pos);
}
}
while (!p.curr_is_token(get_assign_tk()))
lhs_args.push_back(p.parse_expr(get_max_prec()));
lean_assert(lhs_args.size() > 0);
lhs = lhs_args[0];
for (unsigned i = 1; i < lhs_args.size(); i++)
lhs = copy_tag(lhs_args[i], mk_app(lhs, lhs_args[i]));
unsigned num_undef_ids = p.get_num_undef_ids();
for (unsigned i = prev_num_undef_ids; i < num_undef_ids; i++) {
locals.push_back(p.get_undef_id(i));
}
}
validate_equation_lhs(p, lhs, locals);
lhs = merge_equation_lhs_vars(lhs, locals);
auto assign_pos = p.pos();
p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected");
{
parser::local_scope scope2(p);
for (expr const & local : locals)
p.add_local(local);
expr rhs = p.parse_expr();
eqns.push_back(Fun(fns, Fun(locals, p.save_pos(mk_equation(lhs, rhs), assign_pos), p)));
}
if (!is_eqn_prefix(p, bar_only))
break;
p.next();
}
}
expr parse_equations(parser & p, name const & n, expr const & type, buffer<name> & auxs,
optional<local_environment> const & lenv, buffer<expr> const & ps,
pos_info const & def_pos) {
buffer<expr> fns;
buffer<expr> eqns;
{
parser::local_scope scope1(p, lenv);
for (expr const & param : ps)
p.add_local(param);
lean_assert(is_curr_with_or_comma_or_bar(p));
fns.push_back(mk_local(n, type));
if (p.curr_is_token(get_with_tk())) {
while (p.curr_is_token(get_with_tk())) {
p.next();
auto pos = p.pos();
name g_name = p.check_id_next("invalid declaration, identifier expected");
p.check_token_next(get_colon_tk(), "invalid declaration, ':' expected");
expr g_type = p.parse_expr();
expr g = p.save_pos(mk_local(g_name, g_type), pos);
auxs.push_back(g_name);
fns.push_back(g);
}
}
check_eqn_prefix(p);
if (p.curr_is_token(get_none_tk())) {
// no equations have been provided
p.next();
eqns.push_back(Fun(fns, mk_no_equation(), p));
} else {
parse_equations_core(p, fns, eqns);
}
}
if (p.curr_is_token(get_wf_tk())) {
auto pos = p.pos();
p.next();
expr R = p.save_pos(mk_expr_placeholder(), pos);
expr Hwf = p.parse_expr();
return p.save_pos(mk_equations(fns.size(), eqns.size(), eqns.data(), R, Hwf), def_pos);
} else {
return p.save_pos(mk_equations(fns.size(), eqns.size(), eqns.data()), def_pos);
}
}
/** \brief Parse a sequence of equations of the form <tt>| lhs := rhs</tt> */
expr parse_local_equations(parser & p, expr const & fn) {
lean_assert(p.curr_is_token(get_bar_tk()));
auto pos = p.pos();
p.next();
buffer<expr> fns;
buffer<expr> eqns;
fns.push_back(fn);
bool bar_only = true;
parse_equations_core(p, fns, eqns, bar_only);
return p.save_pos(mk_equations(fns.size(), eqns.size(), eqns.data()), pos);
}
static name * g_match_name = nullptr;
bool is_match_binder_name(name const & n) { return n == *g_match_name; }
/** \brief Use equations compiler infrastructure to implement match-with */
expr parse_match(parser & p, unsigned, expr const *, pos_info const & pos) {
buffer<expr> eqns;
expr t;
try {
t = p.parse_expr();
p.check_token_next(get_with_tk(), "invalid 'match' expression, 'with' expected");
expr fn = mk_local(p.mk_fresh_name(), *g_match_name, mk_expr_placeholder(), binder_info());
if (p.curr_is_token(get_end_tk())) {
p.next();
// empty match-with
eqns.push_back(Fun(fn, mk_no_equation()));
expr f = p.save_pos(mk_equations(1, eqns.size(), eqns.data()), pos);
return p.mk_app(f, t, pos);
}
if (is_eqn_prefix(p))
p.next(); // optional '|' in the first case
while (true) {
expr lhs;
unsigned prev_num_undef_ids = p.get_num_undef_ids();
buffer<expr> locals;
{
parser::undef_id_to_local_scope scope2(p);
auto lhs_pos = p.pos();
lhs = p.parse_expr();
lhs = p.mk_app(fn, lhs, lhs_pos);
unsigned num_undef_ids = p.get_num_undef_ids();
for (unsigned i = prev_num_undef_ids; i < num_undef_ids; i++) {
locals.push_back(p.get_undef_id(i));
}
}
validate_equation_lhs(p, lhs, locals);
lhs = merge_equation_lhs_vars(lhs, locals);
auto assign_pos = p.pos();
p.check_token_next(get_assign_tk(), "invalid 'match' expression, ':=' expected");
{
parser::local_scope scope2(p);
for (expr const & local : locals)
p.add_local(local);
expr rhs = p.parse_expr();
eqns.push_back(Fun(fn, Fun(locals, p.save_pos(mk_equation(lhs, rhs), assign_pos), p)));
}
if (!is_eqn_prefix(p))
break;
p.next();
}
} catch (exception & ex) {
consume_until_end(p);
ex.rethrow();
}
p.check_token_next(get_end_tk(), "invalid 'match' expression, 'end' expected");
expr f = p.save_pos(mk_equations(1, eqns.size(), eqns.data()), pos);
return p.mk_app(f, t, pos);
}
// An Lean example is not really a definition, but we use the definition infrastructure to simulate it.
enum def_cmd_kind { Theorem, Definition, Example, Abbreviation, LocalAbbreviation };
class definition_cmd_fn {
parser & m_p;
environment m_env;
def_cmd_kind m_kind;
bool m_is_private;
bool m_is_protected;
bool m_is_noncomputable;
pos_info m_pos;
name m_name;
decl_attributes m_attributes;
name m_real_name; // real name for this declaration
buffer<name> m_ls_buffer;
buffer<name> m_aux_decls; // user provided names for aux_decls
buffer<name> m_real_aux_names; // real names for aux_decls
buffer<expr> m_aux_types; // types of auxiliary decls
expr m_type;
expr m_value;
level_param_names m_ls;
pos_info m_end_pos;
expr m_pre_type;
expr m_pre_value;
// Checkpoint for processing definition/theorem as axiom in case of
// failure
optional<expr> m_type_checkpoint;
optional<environment> m_env_checkpoint;
buffer<name> m_ls_buffer_checkpoint;
void save_checkpoint() {
if (m_kind != Example) {
m_type_checkpoint = m_type;
m_env_checkpoint = m_env;
m_ls_buffer_checkpoint = m_ls_buffer;
}
}
bool is_definition() const { return m_kind == Definition || m_kind == Abbreviation || m_kind == LocalAbbreviation; }
unsigned start_line() const { return m_pos.first; }
unsigned end_line() const { return m_end_pos.first; }
void parse_name() {
if (m_kind == Example)
m_name = get_this_tk();
else
m_name = m_p.check_id_next("invalid declaration, identifier expected");
}
expr extract_nested(expr const & v) {
expr new_v;
std::tie(m_env, new_v) = extract_nested_declarations(m_env, m_p.ios(), m_name, v);
return new_v;
}
void parse_type_value() {
// Parse universe parameters
parser::local_scope scope1(m_p);
parse_univ_params(m_p, m_ls_buffer);
// Parse modifiers
m_attributes.parse(m_p);
if (m_p.curr_is_token(get_assign_tk())) {
auto pos = m_p.pos();
m_p.next();
m_type = m_p.save_pos(mk_expr_placeholder(), pos);
m_value = m_p.parse_expr();
} else if (m_p.curr_is_token(get_colon_tk())) {
m_p.next();
auto pos = m_p.pos();
m_type = m_p.parse_expr();
save_checkpoint();
if (is_curr_with_or_comma_or_bar(m_p)) {
allow_nested_decls_scope scope2(is_definition());
m_value = parse_equations(m_p, m_name, m_type, m_aux_decls,
optional<local_environment>(), buffer<expr>(), m_pos);
} else if (!is_definition() && !m_p.curr_is_token(get_assign_tk())) {
check_end_of_theorem(m_p);
m_value = m_p.save_pos(mk_expr_placeholder(), pos);
} else {
m_p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected");
allow_nested_decls_scope scope2(is_definition());
m_value = m_p.save_pos(m_p.parse_expr(), pos);
}
} else {
buffer<expr> ps;
optional<local_environment> lenv;
bool last_block_delimited = false;
lenv = m_p.parse_binders(ps, last_block_delimited);
auto pos = m_p.pos();
if (m_p.curr_is_token(get_colon_tk())) {
m_p.next();
expr type = m_p.parse_scoped_expr(ps, *lenv);
m_type = Pi(ps, type, m_p);
save_checkpoint();
if (is_curr_with_or_comma_or_bar(m_p)) {
allow_nested_decls_scope scope2(is_definition());
m_value = parse_equations(m_p, m_name, type, m_aux_decls, lenv, ps, m_pos);
} else if (!is_definition() && !m_p.curr_is_token(get_assign_tk())) {
check_end_of_theorem(m_p);
m_value = m_p.save_pos(mk_expr_placeholder(), pos);
} else {
allow_nested_decls_scope scope2(is_definition());
m_p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected");
m_value = m_p.parse_scoped_expr(ps, *lenv);
}
} else {
if (!last_block_delimited && !ps.empty() &&
!is_placeholder(mlocal_type(ps.back()))) {
throw parser_error("invalid declaration, ambiguous parameter declaration, "
"(solution: put parentheses around parameters)",
pos);
}
m_type = m_p.save_pos(mk_expr_placeholder(), m_p.pos());
m_type = Pi(ps, m_type, m_p);
save_checkpoint();
m_p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected");
allow_nested_decls_scope scope2(is_definition());
m_value = m_p.parse_scoped_expr(ps, *lenv);
}
erase_local_binder_info(ps);
m_value = Fun(ps, m_value, m_p);
}
m_end_pos = m_p.pos();
}
void mk_real_name() {
if (m_is_private) {
unsigned h = hash(m_pos.first, m_pos.second);
auto env_n = add_private_name(m_env, m_name, optional<unsigned>(h));
m_env = env_n.first;
m_real_name = env_n.second;
for (name const & aux : m_aux_decls) {
auto env_n = add_private_name(m_env, aux, optional<unsigned>(h));
m_env = env_n.first;
m_real_aux_names.push_back(env_n.second);
}
} else if (m_kind == Example) {
m_real_name = name("example");
} else {
name const & ns = get_namespace(m_env);
m_real_name = ns + m_name;
for (name const & aux : m_aux_decls)
m_real_aux_names.push_back(ns + aux);
}
}
void parse() {
parse_name();
parse_type_value();
check_command_period_or_eof(m_p);
if (m_p.used_sorry())
m_p.declare_sorry();
m_env = m_p.env();
mk_real_name();
}
void display_pos(std::ostream & out) {
::lean::display_pos(out, m_p.get_stream_name().c_str(), m_pos.first, m_pos.second);
}
certified_declaration check(declaration const & d) {
if (m_p.profiling()) {
std::ostringstream msg;
display_pos(msg);
msg << " type checking time for " << m_name;
timeit timer(m_p.diagnostic_stream().get_stream(), msg.str().c_str(), LEAN_PROFILE_THRESHOLD);
return ::lean::check(m_env, d);
} else {
return ::lean::check(m_env, d);
}
}
void process_locals() {
if (m_p.has_locals()) {
buffer<expr> locals;
collect_locals(m_type, m_value, m_p, locals);
m_type = Pi_as_is(locals, m_type, m_p);
buffer<expr> new_locals;
new_locals.append(locals);
erase_local_binder_info(new_locals);
m_value = Fun_as_is(new_locals, m_value, m_p);
auto ps = collect_univ_params_ignoring_tactics(m_type);
ps = collect_univ_params_ignoring_tactics(m_value, ps);
update_univ_parameters(m_ls_buffer, ps, m_p);
remove_local_vars(m_p, locals);
m_ls = to_list(m_ls_buffer.begin(), m_ls_buffer.end());
levels local_ls = collect_local_nonvar_levels(m_p, m_ls);
local_ls = remove_local_vars(m_p, local_ls);
if (!locals.empty()) {
expr ref = mk_local_ref(m_real_name, local_ls, locals);
m_env = m_p.add_local_ref(m_env, m_name, ref);
} else if (local_ls) {
expr ref = mk_constant(m_real_name, local_ls);
m_env = m_p.add_local_ref(m_env, m_name, ref);
}
} else {
update_univ_parameters(m_ls_buffer, collect_univ_params(m_value, collect_univ_params(m_type)), m_p);
m_ls = to_list(m_ls_buffer.begin(), m_ls_buffer.end());
}
}
bool try_cache() {
// We don't cache examples.
// We don't cache mutually recursive definitions (if this becomes a performance problem, we can fix it).
if (m_kind != Example &&
m_p.are_info_lines_valid(start_line(), end_line()) &&
m_aux_decls.size() == 0) {
// we only use the cache if the information associated with the line is valid
if (auto it = m_p.find_cached_definition(m_real_name, m_type, m_value)) {
optional<certified_declaration> cd;
try {
level_param_names c_ls; expr c_type, c_value;
std::tie(c_ls, c_type, c_value) = *it;
// cache may have been created using a different trust level
c_type = postprocess(m_env, c_type);
c_value = postprocess(m_env, c_value);
if (m_kind == Theorem) {
cd = check(mk_theorem(m_env, m_real_name, c_ls, c_type, c_value));
if (m_p.keep_new_thms()) {
if (!m_is_private)
m_p.add_decl_index(m_real_name, m_pos, m_p.get_cmd_token(), c_type);
m_p.add_delayed_theorem(*cd);
}
cd = check(mk_axiom(m_real_name, c_ls, c_type));
m_env = module::add(m_env, *cd);
} else {
c_value = extract_nested(c_value);
cd = check(mk_definition(m_env, m_real_name, c_ls, c_type, c_value));
if (!m_is_private)
m_p.add_decl_index(m_real_name, m_pos, m_p.get_cmd_token(), c_type);
m_env = module::add(m_env, *cd);
}
return true;
} catch (exception&) {}
}
}
return false;
}
void register_decl(name const & n, name const & real_n, expr const & type) {
if (m_kind != Example) {
if (!m_p.ignore_noncomputable()) {
if (!m_is_noncomputable && is_marked_noncomputable(m_env, real_n)) {
auto reason = get_noncomputable_reason(m_env, real_n);
lean_assert(reason);
if (m_p.in_theorem_queue(*reason)) {
throw exception(sstream() << "definition '" << n << "' was marked as noncomputable because '" << *reason
<< "' is still in theorem queue (solution: use command 'reveal " << *reason << "'");
} else {
throw exception(sstream() << "definition '" << n
<< "' is noncomputable, it depends on '" << *reason << "'");
}
}
if (m_is_noncomputable && !is_marked_noncomputable(m_env, real_n)) {
throw exception(sstream() << "definition '" << n << "' was incorrectly marked as noncomputable");
}
}
// TODO(Leo): register aux_decls
if (!m_is_private) {
m_p.add_decl_index(real_n, m_pos, m_p.get_cmd_token(), type);
m_env = ensure_decl_namespaces(m_env, real_n);
}
if (m_is_protected)
m_env = add_protected(m_env, real_n);
if (n != real_n) {
if (m_is_protected)
m_env = add_expr_alias_rec(m_env, get_protected_shortest_name(real_n), real_n);
else
m_env = add_expr_alias_rec(m_env, n, real_n);
}
if (m_kind == Abbreviation || m_kind == LocalAbbreviation) {
bool persistent = m_kind == Abbreviation;
m_env = add_abbreviation(m_env, real_n, m_attributes.is_parsing_only(), get_namespace(m_env), persistent);
}
m_env = m_attributes.apply(m_env, m_p.ios(), real_n, get_namespace(m_env));
}
}
void register_decl() {
register_decl(m_name, m_real_name, m_type);
for (unsigned i = 0; i < m_aux_decls.size(); i++) {
register_decl(m_aux_decls[i], m_real_aux_names[i], m_aux_types[i]);
}
}
// When compiling mutually recursive equations or equations based on well-found recursion,
// the equations compiler produces a result that combines different definitions.
// We say the result is "tangled". This method untangles it.
// The tangled result is of the form
// Fun (a : A), [equations_result main-value aux-type-1 aux-value-1 ... aux-type-i aux-value-i]
//
// The result is the updated value. The auxiliary definitions (type and value) are stored at m_aux_types and aux_values
expr untangle_definitions(expr const & type, expr const & value, buffer<expr> & aux_values) {
if (is_lambda(value)) {
lean_assert(is_pi(type));
expr r = untangle_definitions(binding_body(type), binding_body(value), aux_values);
lean_assert(aux_values.size() == m_aux_types.size());
for (unsigned i = 0; i < aux_values.size(); i++) {
m_aux_types[i] = mk_pi(binding_name(type), binding_domain(type), m_aux_types[i], binding_info(type));
aux_values[i] = mk_lambda(binding_name(value), binding_domain(value), aux_values[i], binding_info(value));
}
return update_binding(value, binding_domain(value), r);
} else if (is_equations_result(value)) {
lean_assert(get_equations_result_size(value) > 1);
lean_assert(get_equations_result_size(value) % 2 == 1);
for (unsigned i = 1; i < get_equations_result_size(value); i+=2) {
m_aux_types.push_back(get_equations_result(value, i));
aux_values.push_back(get_equations_result(value, i+1));
}
return get_equations_result(value, 0);
} else {
throw exception("invalid declaration, unexpected result produced by equations compiler");
}
}
std::tuple<expr, level_param_names> elaborate_type(expr const & e) {
bool clear_pre_info = false; // we don't want to clear pre_info data until we process the proof.
if (m_p.profiling()) {
std::ostringstream msg;
display_pos(msg);
msg << " type elaboration time for " << m_name;
timeit timer(m_p.diagnostic_stream().get_stream(), msg.str().c_str(), LEAN_PROFILE_THRESHOLD);
return m_p.elaborate_type(e, list<expr>(), clear_pre_info);
} else {
return m_p.elaborate_type(e, list<expr>(), clear_pre_info);
}
}
std::tuple<expr, expr, level_param_names> elaborate_definition(expr const & type, expr const & value) {
name const & def_name = m_kind == Example ? m_real_name : m_name;
if (m_p.profiling()) {
std::ostringstream msg;
display_pos(msg);
msg << " elaboration time for " << m_name;
timeit timer(m_p.diagnostic_stream().get_stream(), msg.str().c_str(), LEAN_PROFILE_THRESHOLD);
return m_p.elaborate_definition(def_name, type, value);
} else {
return m_p.elaborate_definition(def_name, type, value);
}
}
// Elaborate definitions that contain auxiliary ones nested inside.
// Remark: we do not cache this kind of definition.
// This method will also initialize m_aux_types
void elaborate_multi() {
lean_assert(!m_aux_decls.empty());
level_param_names new_ls;
std::tie(m_type, m_value, new_ls) = elaborate_definition(m_type, m_value);
new_ls = append(m_ls, new_ls);
lean_assert(m_aux_types.empty());
buffer<expr> aux_values;
m_value = untangle_definitions(m_type, m_value, aux_values);
lean_assert(aux_values.size() == m_aux_types.size());
if (aux_values.size() != m_real_aux_names.size())
throw exception("invalid declaration, failed to compile auxiliary declarations");
m_type = postprocess(m_env, m_type);
m_value = extract_nested(postprocess(m_env, m_value));
for (unsigned i = 0; i < aux_values.size(); i++) {
m_aux_types[i] = postprocess(m_env, m_aux_types[i]);
aux_values[i] = postprocess(m_env, aux_values[i]);
}
if (is_definition()) {
m_env = module::add(m_env, check(mk_definition(m_env, m_real_name, new_ls, m_type, m_value)));
for (unsigned i = 0; i < aux_values.size(); i++)
m_env = module::add(m_env, check(mk_definition(m_env, m_real_aux_names[i], new_ls,
m_aux_types[i], aux_values[i])));
} else {
m_env = module::add(m_env, check(mk_theorem(m_env, m_real_name, new_ls, m_type, m_value)));
for (unsigned i = 0; i < aux_values.size(); i++)
m_env = module::add(m_env, check(mk_theorem(m_env, m_real_aux_names[i], new_ls,
m_aux_types[i], aux_values[i])));
}
}
void elaborate() {
if (!try_cache()) {
expr pre_type = m_type;
expr pre_value = m_value;
level_param_names new_ls;
m_p.remove_proof_state_info(m_pos, m_p.pos());
if (!m_aux_decls.empty()) {
// TODO(Leo): split equations_result
elaborate_multi();
} else if (!is_definition()) {
// Theorems and Examples
auto type_pos = m_p.pos_of(m_type);
std::tie(m_type, new_ls) = elaborate_type(m_type);
check_no_metavar(m_env, m_real_name, m_type, true);
m_ls = append(m_ls, new_ls);
m_type = postprocess(m_env, m_type);
expr type_as_is = m_p.save_pos(mk_as_is(m_type), type_pos);
if (!m_p.collecting_info() && !m_is_noncomputable && m_kind == Theorem && m_p.num_threads() > 1) {
// Add as axiom, and create a task to prove the theorem.
// Remark: we don't postpone the "proof" of Examples.
m_p.add_delayed_theorem(m_env, m_real_name, m_ls, type_as_is, m_value);
m_env = module::add(m_env, check(mk_axiom(m_real_name, m_ls, m_type)));
} else {
std::tie(m_type, m_value, new_ls) = elaborate_definition(type_as_is, m_value);
m_type = postprocess(m_env, m_type);
m_value = postprocess(m_env, m_value);
new_ls = append(m_ls, new_ls);
auto cd = check(mk_theorem(m_env, m_real_name, new_ls, m_type, m_value));
if (m_kind == Theorem) {
// Remark: we don't keep examples
if (m_p.keep_new_thms()) {
m_p.add_delayed_theorem(cd);
}
cd = check(mk_axiom(m_real_name, new_ls, m_type));
m_env = module::add(m_env, cd);
m_p.cache_definition(m_real_name, pre_type, pre_value, new_ls, m_type, m_value);
}
}
} else {
std::tie(m_type, m_value, new_ls) = elaborate_definition(m_type, m_value);
new_ls = append(m_ls, new_ls);
m_type = postprocess(m_env, m_type);
m_value = postprocess(m_env, m_value);
expr new_val = extract_nested(m_value);
m_env = module::add(m_env, check(mk_definition(m_env, m_real_name, new_ls, m_type, new_val)));
// Remark: we cache the definition with the nested declarations.
m_p.cache_definition(m_real_name, pre_type, pre_value, new_ls, m_type, m_value);
}
}
}
void process_as_axiom() {
lean_assert(m_type_checkpoint);
m_type = *m_type_checkpoint;
m_env = *m_env_checkpoint;
m_ls_buffer = m_ls_buffer_checkpoint;
m_aux_decls.clear();
m_real_aux_names.clear();
expr dummy = mk_Prop();
m_value = dummy;
process_locals();
mk_real_name();
level_param_names new_ls;
std::tie(m_type, new_ls) = elaborate_type(m_type);
check_no_metavar(m_env, m_real_name, m_type, true);
m_ls = append(m_ls, new_ls);
m_type = postprocess(m_env, m_type);
m_env = module::add(m_env, check(mk_axiom(m_real_name, m_ls, m_type)));
register_decl(m_name, m_real_name, m_type);
}
public:
definition_cmd_fn(parser & p, def_cmd_kind kind, bool is_private, bool is_protected, bool is_noncomputable):
m_p(p), m_env(m_p.env()), m_kind(kind),
m_is_private(is_private), m_is_protected(is_protected), m_is_noncomputable(is_noncomputable),
m_pos(p.pos()), m_attributes(kind == Abbreviation || kind == LocalAbbreviation) {
lean_assert(!(m_is_private && m_is_protected));
if (!is_standard(m_p.env()) && is_noncomputable)
throw exception("invalid 'noncomputable' declarations, it can only be used in the standard library");
if (kind != Definition && is_noncomputable)
throw exception("invalid 'noncomputable' declaration, it can only be used for definitions");
}
environment operator()() {
try {
parse();
process_locals();
elaborate();
register_decl();
return m_env;
} catch (exception & ex) {
if (m_type_checkpoint) {
try {
process_as_axiom();
} catch (exception & ex2) {
ex.rethrow();
}
throw update_environment_exception(m_env, std::shared_ptr<throwable>(ex.clone()));
}
ex.rethrow();
lean_unreachable();
}
}
};
static environment definition_cmd_core(parser & p, def_cmd_kind kind, bool is_private, bool is_protected, bool is_noncomputable) {
return definition_cmd_fn(p, kind, is_private, is_protected, is_noncomputable)();
}
static environment definition_cmd(parser & p) {
return definition_cmd_core(p, Definition, false, false, false);
}
static environment abbreviation_cmd(parser & p) {
return definition_cmd_core(p, Abbreviation, false, false, false);
}
environment local_abbreviation_cmd(parser & p) {
return definition_cmd_core(p, LocalAbbreviation, true, false, false);
}
static environment theorem_cmd(parser & p) {
return definition_cmd_core(p, Theorem, false, false, false);
}
static environment example_cmd(parser & p) {
definition_cmd_core(p, Example, false, false, false);
return p.env();
}
static environment private_definition_cmd(parser & p) {
bool is_noncomputable = false;
if (p.curr_is_token(get_noncomputable_tk())) {
is_noncomputable = true;
p.next();
}
def_cmd_kind kind = Definition;
if (p.curr_is_token_or_id(get_definition_tk())) {
p.next();
} else if (p.curr_is_token_or_id(get_abbreviation_tk())) {
kind = Abbreviation;
p.next();
} else if (p.curr_is_token_or_id(get_theorem_tk())) {
p.next();
kind = Theorem;
} else {
throw parser_error("invalid 'private' definition/theorem, 'definition' or 'theorem' expected", p.pos());
}
return definition_cmd_core(p, kind, true, false, is_noncomputable);
}
static environment protected_definition_cmd(parser & p) {
if (p.curr_is_token_or_id(get_axiom_tk())) {
p.next();
return variable_cmd_core(p, variable_kind::Axiom, true);
} else if (p.curr_is_token_or_id(get_constant_tk())) {
p.next();
return variable_cmd_core(p, variable_kind::Constant, true);
} else if (p.curr_is_token_or_id(get_axioms_tk())) {
p.next();
return variables_cmd_core(p, variable_kind::Axiom, true);
} else if (p.curr_is_token_or_id(get_constants_tk())) {
p.next();
return variables_cmd_core(p, variable_kind::Constant, true);
} else {
bool is_noncomputable = false;
if (p.curr_is_token(get_noncomputable_tk())) {
is_noncomputable = true;
p.next();
}
def_cmd_kind kind = Definition;
if (p.curr_is_token_or_id(get_definition_tk())) {
p.next();
} else if (p.curr_is_token_or_id(get_abbreviation_tk())) {
p.next();
kind = Abbreviation;
} else if (p.curr_is_token_or_id(get_theorem_tk())) {
p.next();
kind = Theorem;
} else {
throw parser_error("invalid 'protected' definition/theorem, 'definition' or 'theorem' expected", p.pos());
}
return definition_cmd_core(p, kind, false, true, is_noncomputable);
}
}
static environment noncomputable_cmd(parser & p) {
if (p.curr_is_token_or_id(get_theory_tk())) {
p.next();
p.set_ignore_noncomputable();
return p.env();
} else {
bool is_private = false;
bool is_protected = false;
if (p.curr_is_token(get_private_tk())) {
is_private = true;
p.next();
} else if (p.curr_is_token(get_protected_tk())) {
is_protected = true;
p.next();
}
def_cmd_kind kind = Definition;
if (p.curr_is_token_or_id(get_definition_tk())) {
p.next();
} else if (p.curr_is_token_or_id(get_abbreviation_tk())) {
p.next();
kind = Abbreviation;
} else if (p.curr_is_token_or_id(get_theorem_tk())) {
p.next();
kind = Theorem;
} else {
throw parser_error("invalid 'noncomputable' definition/theorem, 'definition' or 'theorem' expected", p.pos());
}
return definition_cmd_core(p, kind, is_private, is_protected, true);
}
}
static environment include_cmd_core(parser & p, bool include) {
if (!p.curr_is_identifier())
throw parser_error(sstream() << "invalid include/omit command, identifier expected", p.pos());
while (p.curr_is_identifier()) {
auto pos = p.pos();
name n = p.get_name_val();
p.next();
if (!p.get_local(n))
throw parser_error(sstream() << "invalid include/omit command, '" << n << "' is not a parameter/variable", pos);
if (include) {
if (p.is_include_variable(n))
throw parser_error(sstream() << "invalid include command, '" << n << "' has already been included", pos);
p.include_variable(n);
} else {
if (!p.is_include_variable(n))
throw parser_error(sstream() << "invalid omit command, '" << n << "' has not been included", pos);
p.omit_variable(n);
}
}
return p.env();
}
static environment include_cmd(parser & p) {
return include_cmd_core(p, true);
}
static environment omit_cmd(parser & p) {
return include_cmd_core(p, false);
}
static environment attribute_cmd_core(parser & p, bool persistent) {
buffer<name> ds;
bool abbrev = false;
decl_attributes attributes(abbrev, persistent);
bool parsed_attrs = false;
if (!p.curr_is_identifier()) {
attributes.parse(p);
parsed_attrs = true;
}
name d = p.check_constant_next("invalid 'attribute' command, constant expected");
ds.push_back(d);
while (p.curr_is_identifier()) {
ds.push_back(p.check_constant_next("invalid 'attribute' command, constant expected"));
}
if (!parsed_attrs)
attributes.parse(p);
name ns = get_namespace(p.env());
if (p.curr_is_token(get_at_tk())) {
if (!persistent)
throw parser_error("invalid 'attribute' command, 'at' modifier cannot be used with local attributes", p.pos());
p.next();
ns = p.check_id_next("invalid 'attribute' command, identifier expected");
if (ns == get_root_tk())
ns = name();
}
environment env = p.env();
for (name const & d : ds)
env = attributes.apply(env, p.ios(), d, ns);
return env;
}
static environment attribute_cmd(parser & p) {
return attribute_cmd_core(p, true);
}
environment local_attribute_cmd(parser & p) {
return attribute_cmd_core(p, false);
}
static environment reveal_cmd(parser & p) {
buffer<name> ds;
name d = p.check_constant_next("invalid 'reveal' command, constant expected");
ds.push_back(d);
while (p.curr_is_identifier()) {
ds.push_back(p.check_constant_next("invalid 'reveal' command, constant expected"));
}
return p.reveal_theorems(ds);
}
void register_decl_cmds(cmd_table & r) {
add_cmd(r, cmd_info("universe", "declare a universe level", universe_cmd));
add_cmd(r, cmd_info("universes", "declare universe levels", universes_cmd));
add_cmd(r, cmd_info("variable", "declare a new variable", variable_cmd));
add_cmd(r, cmd_info("parameter", "declare a new parameter", parameter_cmd));
add_cmd(r, cmd_info("constant", "declare a new constant (aka top-level variable)", constant_cmd));
add_cmd(r, cmd_info("axiom", "declare a new axiom", axiom_cmd));
add_cmd(r, cmd_info("variables", "declare new variables", variables_cmd));
add_cmd(r, cmd_info("parameters", "declare new parameters", parameters_cmd));
add_cmd(r, cmd_info("constants", "declare new constants (aka top-level variables)", constants_cmd));
add_cmd(r, cmd_info("axioms", "declare new axioms", axioms_cmd));
add_cmd(r, cmd_info("definition", "add new definition", definition_cmd));
add_cmd(r, cmd_info("noncomputable", "add new noncomputable definition", noncomputable_cmd));
add_cmd(r, cmd_info("example", "add new example", example_cmd));
add_cmd(r, cmd_info("private", "add new private definition/theorem", private_definition_cmd));
add_cmd(r, cmd_info("protected", "add new protected definition/theorem", protected_definition_cmd));
add_cmd(r, cmd_info("theorem", "add new theorem", theorem_cmd));
add_cmd(r, cmd_info("reveal", "reveal given theorems", reveal_cmd));
add_cmd(r, cmd_info("include", "force section parameter/variable to be included", include_cmd));
add_cmd(r, cmd_info("attribute", "set declaration attributes", attribute_cmd));
add_cmd(r, cmd_info("abbreviation", "declare a new abbreviation", abbreviation_cmd));
add_cmd(r, cmd_info("omit", "undo 'include' command", omit_cmd));
}
void initialize_decl_cmds() {
g_match_name = new name(name::mk_internal_unique_name(), "match");
}
void finalize_decl_cmds() {
delete g_match_name;
}
}