lean2/library/data/nat/div.lean

701 lines
26 KiB
Text
Raw Normal View History

--- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Jeremy Avigad
-- div.lean
-- ========
--
-- This is a continuation of the development of the natural numbers, with a general way of
-- defining recursive functions, and definitions of div, mod, and gcd.
import logic .sub algebra.relation data.prod
import tools.fake_simplifier
open nat relation relation.iff_ops prod
open fake_simplifier decidable
open eq.ops
namespace nat
-- A general recursion principle
-- -----------------------------
--
-- Data:
--
-- dom, codom : Type
-- default : codom
-- measure : dom →
-- rec_val : dom → (dom → codom) → codom
--
-- and a proof
--
-- rec_decreasing : ∀m, m ≥ measure x, rec_val x f = rec_val x (restrict f m)
--
-- ... which says that the recursive call only depends on f at values with measure less than x,
-- in the sense that changing other values to the default value doesn't change the result.
--
-- The result is a function f = rec_measure, satisfying
--
-- f x = rec_val x f
definition restrict {dom codom : Type} (default : codom) (measure : dom → ) (f : dom → codom)
(m : ) (x : dom) :=
if measure x < m then f x else default
theorem restrict_lt_eq {dom codom : Type} (default : codom) (measure : dom → ) (f : dom → codom)
(m : ) (x : dom) (H : measure x < m) :
restrict default measure f m x = f x :=
if_pos H
theorem restrict_not_lt_eq {dom codom : Type} (default : codom) (measure : dom → )
(f : dom → codom) (m : ) (x : dom) (H : ¬ measure x < m) :
restrict default measure f m x = default :=
if_neg H
definition rec_measure_aux {dom codom : Type} (default : codom) (measure : dom → )
(rec_val : dom → (dom → codom) → codom) : → dom → codom :=
rec (λx, default) (λm g x, if measure x < succ m then rec_val x g else default)
definition rec_measure {dom codom : Type} (default : codom) (measure : dom → )
(rec_val : dom → (dom → codom) → codom) (x : dom) : codom :=
rec_measure_aux default measure rec_val (succ (measure x)) x
theorem rec_measure_aux_spec {dom codom : Type} (default : codom) (measure : dom → )
(rec_val : dom → (dom → codom) → codom)
(rec_decreasing : ∀g1 g2 x, (∀z, measure z < measure x → g1 z = g2 z) →
rec_val x g1 = rec_val x g2)
(m : ) :
let f' := rec_measure_aux default measure rec_val in
let f := rec_measure default measure rec_val in
∀x, f' m x = restrict default measure f m x :=
let f' := rec_measure_aux default measure rec_val in
let f := rec_measure default measure rec_val in
case_strong_induction_on m
(take x,
have H1 : f' 0 x = default, from rfl,
have H2 : ¬ measure x < 0, from not_lt_zero,
have H3 : restrict default measure f 0 x = default, from if_neg H2,
show f' 0 x = restrict default measure f 0 x, from H1 ⬝ H3⁻¹)
(take m,
assume IH: ∀n, n ≤ m → ∀x, f' n x = restrict default measure f n x,
take x : dom,
show f' (succ m) x = restrict default measure f (succ m) x, from
by_cases -- (measure x < succ m)
(assume H1 : measure x < succ m,
have H2a : ∀z, measure z < measure x → f' m z = f z, from
take z,
assume Hzx : measure z < measure x,
calc
f' m z = restrict default measure f m z : IH m le_refl z
... = f z : restrict_lt_eq _ _ _ _ _ (lt_le_trans Hzx (lt_succ_imp_le H1)),
have H2 : f' (succ m) x = rec_val x f, from
calc
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
... = rec_val x (f' m) : if_pos H1
... = rec_val x f : rec_decreasing (f' m) f x H2a,
let m' := measure x in
have H3a : ∀z, measure z < m' → f' m' z = f z, from
take z,
assume Hzx : measure z < measure x,
calc
f' m' z = restrict default measure f m' z : IH _ (lt_succ_imp_le H1) _
... = f z : restrict_lt_eq _ _ _ _ _ Hzx,
have H3 : restrict default measure f (succ m) x = rec_val x f, from
calc
restrict default measure f (succ m) x = f x : if_pos H1
... = f' (succ m') x : eq.refl _
... = if measure x < succ m' then rec_val x (f' m') else default : rfl
... = rec_val x (f' m') : if_pos self_lt_succ
... = rec_val x f : rec_decreasing _ _ _ H3a,
show f' (succ m) x = restrict default measure f (succ m) x,
from H2 ⬝ H3⁻¹)
(assume H1 : ¬ measure x < succ m,
have H2 : f' (succ m) x = default, from
calc
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
... = default : if_neg H1,
have H3 : restrict default measure f (succ m) x = default,
from if_neg H1,
show f' (succ m) x = restrict default measure f (succ m) x,
from H2 ⬝ H3⁻¹))
theorem rec_measure_spec {dom codom : Type} {default : codom} {measure : dom → }
(rec_val : dom → (dom → codom) → codom)
(rec_decreasing : ∀g1 g2 x, (∀z, measure z < measure x → g1 z = g2 z) →
rec_val x g1 = rec_val x g2)
(x : dom):
let f := rec_measure default measure rec_val in
f x = rec_val x f :=
let f' := rec_measure_aux default measure rec_val in
let f := rec_measure default measure rec_val in
let m := measure x in
have H : ∀z, measure z < measure x → f' m z = f z, from
take z,
assume H1 : measure z < measure x,
calc
f' m z = restrict default measure f m z : rec_measure_aux_spec _ _ _ rec_decreasing m z
... = f z : restrict_lt_eq _ _ _ _ _ H1,
calc
f x = f' (succ m) x : rfl
... = if measure x < succ m then rec_val x (f' m) else default : rfl
... = rec_val x (f' m) : if_pos (self_lt_succ)
... = rec_val x f : rec_decreasing _ _ _ H
-- Div and mod
-- -----------
-- ### the definition of div
-- for fixed y, recursive call for x div y
definition div_aux_rec (y : ) (x : ) (div_aux' : ) : :=
if (y = 0 x < y) then 0 else succ (div_aux' (x - y))
definition div_aux (y : ) : := rec_measure 0 (fun x, x) (div_aux_rec y)
theorem div_aux_decreasing (y : ) (g1 g2 : ) (x : ) (H : ∀z, z < x → g1 z = g2 z) :
div_aux_rec y x g1 = div_aux_rec y x g2 :=
let lhs := div_aux_rec y x g1 in
let rhs := div_aux_rec y x g2 in
show lhs = rhs, from
by_cases -- (y = 0 x < y)
(assume H1 : y = 0 x < y,
calc
lhs = 0 : if_pos H1
... = rhs : (if_pos H1)⁻¹)
(assume H1 : ¬ (y = 0 x < y),
have H2a : y ≠ 0, from assume H, H1 (or.inl H),
have H2b : ¬ x < y, from assume H, H1 (or.inr H),
have ypos : y > 0, from ne_zero_imp_pos H2a,
have xgey : x ≥ y, from not_lt_imp_ge H2b,
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
calc
lhs = succ (g1 (x - y)) : if_neg H1
... = succ (g2 (x - y)) : {H _ H4}
... = rhs : (if_neg H1)⁻¹)
theorem div_aux_spec (y : ) (x : ) :
div_aux y x = if (y = 0 x < y) then 0 else succ (div_aux y (x - y)) :=
rec_measure_spec (div_aux_rec y) (div_aux_decreasing y) x
definition idivide (x : ) (y : ) : := div_aux y x
infixl `div` := idivide
theorem div_zero {x : } : x div 0 = 0 :=
div_aux_spec _ _ ⬝ if_pos (or.inl rfl)
-- add_rewrite div_zero
theorem div_less {x y : } (H : x < y) : x div y = 0 :=
div_aux_spec _ _ ⬝ if_pos (or.inr H)
-- add_rewrite div_less
theorem zero_div {y : } : 0 div y = 0 :=
case y div_zero (take y', div_less succ_pos)
-- add_rewrite zero_div
theorem div_rec {x y : } (H1 : y > 0) (H2 : x ≥ y) : x div y = succ ((x - y) div y) :=
have H3 : ¬ (y = 0 x < y), from
not_intro
(assume H4 : y = 0 x < y,
or.elim H4
(assume H5 : y = 0, not_elim lt_irrefl (H5 ▸ H1))
(assume H5 : x < y, not_elim (lt_imp_not_ge H5) H2)),
div_aux_spec _ _ ⬝ if_neg H3
theorem div_add_self_right {x z : } (H : z > 0) : (x + z) div z = succ (x div z) :=
have H1 : z ≤ x + z, by simp,
let H2 := div_rec H H1 in
by simp
theorem div_add_mul_self_right {x y z : } (H : z > 0) : (x + y * z) div z = x div z + y :=
induction_on y (by simp)
(take y,
assume IH : (x + y * z) div z = x div z + y,
calc
(x + succ y * z) div z = (x + y * z + z) div z : by simp
... = succ ((x + y * z) div z) : div_add_self_right H
... = x div z + succ y : by simp)
-- ### The definition of mod
-- for fixed y, recursive call for x mod y
definition mod_aux_rec (y : ) (x : ) (mod_aux' : ) : :=
if (y = 0 x < y) then x else mod_aux' (x - y)
definition mod_aux (y : ) : := rec_measure 0 (fun x, x) (mod_aux_rec y)
theorem mod_aux_decreasing (y : ) (g1 g2 : ) (x : ) (H : ∀z, z < x → g1 z = g2 z) :
mod_aux_rec y x g1 = mod_aux_rec y x g2 :=
let lhs := mod_aux_rec y x g1 in
let rhs := mod_aux_rec y x g2 in
show lhs = rhs, from
by_cases -- (y = 0 x < y)
(assume H1 : y = 0 x < y,
calc
lhs = x : if_pos H1
... = rhs : (if_pos H1)⁻¹)
(assume H1 : ¬ (y = 0 x < y),
have H2a : y ≠ 0, from assume H, H1 (or.inl H),
have H2b : ¬ x < y, from assume H, H1 (or.inr H),
have ypos : y > 0, from ne_zero_imp_pos H2a,
have xgey : x ≥ y, from not_lt_imp_ge H2b,
have H4 : x - y < x, from sub_lt (lt_le_trans ypos xgey) ypos,
calc
lhs = g1 (x - y) : if_neg H1
... = g2 (x - y) : H _ H4
... = rhs : (if_neg H1)⁻¹)
theorem mod_aux_spec (y : ) (x : ) :
mod_aux y x = if (y = 0 x < y) then x else mod_aux y (x - y) :=
rec_measure_spec (mod_aux_rec y) (mod_aux_decreasing y) x
definition modulo (x : ) (y : ) : := mod_aux y x
infixl `mod` := modulo
theorem mod_zero {x : } : x mod 0 = x :=
mod_aux_spec _ _ ⬝ if_pos (or.inl rfl)
-- add_rewrite mod_zero
theorem mod_lt_eq {x y : } (H : x < y) : x mod y = x :=
mod_aux_spec _ _ ⬝ if_pos (or.inr H)
-- add_rewrite mod_lt_eq
theorem zero_mod {y : } : 0 mod y = 0 :=
case y mod_zero (take y', mod_lt_eq succ_pos)
-- add_rewrite zero_mod
theorem mod_rec {x y : } (H1 : y > 0) (H2 : x ≥ y) : x mod y = (x - y) mod y :=
have H3 : ¬ (y = 0 x < y), from
not_intro
(assume H4 : y = 0 x < y,
or.elim H4
(assume H5 : y = 0, not_elim lt_irrefl (H5 ▸ H1))
(assume H5 : x < y, not_elim (lt_imp_not_ge H5) H2)),
mod_aux_spec _ _ ⬝ if_neg H3
-- need more of these, add as rewrite rules
theorem mod_add_self_right {x z : } (H : z > 0) : (x + z) mod z = x mod z :=
have H1 : z ≤ x + z, by simp,
let H2 := mod_rec H H1 in
by simp
theorem mod_add_mul_self_right {x y z : } (H : z > 0) : (x + y * z) mod z = x mod z :=
induction_on y (by simp)
(take y,
assume IH : (x + y * z) mod z = x mod z,
calc
(x + succ y * z) mod z = (x + y * z + z) mod z : by simp
... = (x + y * z) mod z : mod_add_self_right H
... = x mod z : IH)
theorem mod_mul_self_right {m n : } : (m * n) mod n = 0 :=
case_zero_pos n (by simp)
(take n,
assume npos : n > 0,
(by simp) ▸ (@mod_add_mul_self_right 0 m _ npos))
-- add_rewrite mod_mul_self_right
theorem mod_mul_self_left {m n : } : (m * n) mod m = 0 :=
!mul.comm ▸ mod_mul_self_right
-- add_rewrite mod_mul_self_left
-- ### properties of div and mod together
theorem mod_lt {x y : } (H : y > 0) : x mod y < y :=
case_strong_induction_on x
(show 0 mod y < y, from zero_mod⁻¹ ▸ H)
(take x,
assume IH : ∀x', x' ≤ x → x' mod y < y,
show succ x mod y < y, from
by_cases -- (succ x < y)
(assume H1 : succ x < y,
have H2 : succ x mod y = succ x, from mod_lt_eq H1,
show succ x mod y < y, from H2⁻¹ ▸ H1)
(assume H1 : ¬ succ x < y,
have H2 : y ≤ succ x, from not_lt_imp_ge H1,
have H3 : succ x mod y = (succ x - y) mod y, from mod_rec H H2,
have H4 : succ x - y < succ x, from sub_lt succ_pos H,
have H5 : succ x - y ≤ x, from lt_succ_imp_le H4,
show succ x mod y < y, from H3⁻¹ ▸ IH _ H5))
theorem div_mod_eq {x y : } : x = x div y * y + x mod y :=
case_zero_pos y
(show x = x div 0 * 0 + x mod 0, from
(calc
x div 0 * 0 + x mod 0 = 0 + x mod 0 : {!mul.zero_right}
... = x mod 0 : !add.zero_left
... = x : mod_zero)⁻¹)
(take y,
assume H : y > 0,
show x = x div y * y + x mod y, from
case_strong_induction_on x
(show 0 = (0 div y) * y + 0 mod y, by simp)
(take x,
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
show succ x = succ x div y * y + succ x mod y, from
by_cases -- (succ x < y)
(assume H1 : succ x < y,
have H2 : succ x div y = 0, from div_less H1,
have H3 : succ x mod y = succ x, from mod_lt_eq H1,
by simp)
(assume H1 : ¬ succ x < y,
have H2 : y ≤ succ x, from not_lt_imp_ge H1,
have H3 : succ x div y = succ ((succ x - y) div y), from div_rec H H2,
have H4 : succ x mod y = (succ x - y) mod y, from mod_rec H H2,
have H5 : succ x - y < succ x, from sub_lt succ_pos H,
have H6 : succ x - y ≤ x, from lt_succ_imp_le H5,
(calc
succ x div y * y + succ x mod y = succ ((succ x - y) div y) * y + succ x mod y :
{H3}
... = ((succ x - y) div y) * y + y + succ x mod y : {!mul.succ_left}
... = ((succ x - y) div y) * y + y + (succ x - y) mod y : {H4}
... = ((succ x - y) div y) * y + (succ x - y) mod y + y : !add.right_comm
... = succ x - y + y : {(IH _ H6)⁻¹}
... = succ x : add_sub_ge_left H2)⁻¹)))
theorem mod_le {x y : } : x mod y ≤ x :=
div_mod_eq⁻¹ ▸ le_add_left
--- a good example where simplifying using the context causes problems
theorem remainder_unique {y : } (H : y > 0) {q1 r1 q2 r2 : } (H1 : r1 < y) (H2 : r2 < y)
(H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 :=
calc
r1 = r1 mod y : by simp
... = (r1 + q1 * y) mod y : (mod_add_mul_self_right H)⁻¹
... = (q1 * y + r1) mod y : {!add.comm}
... = (r2 + q2 * y) mod y : by simp
... = r2 mod y : mod_add_mul_self_right H
... = r2 : by simp
theorem quotient_unique {y : } (H : y > 0) {q1 r1 q2 r2 : } (H1 : r1 < y) (H2 : r2 < y)
(H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 :=
have H4 : q1 * y + r2 = q2 * y + r2, from (remainder_unique H H1 H2 H3) ▸ H3,
have H5 : q1 * y = q2 * y, from add.cancel_right H4,
have H6 : y > 0, from le_lt_trans zero_le H1,
show q1 = q2, from mul_cancel_right H6 H5
theorem div_mul_mul {z x y : } (zpos : z > 0) : (z * x) div (z * y) = x div y :=
by_cases -- (y = 0)
(assume H : y = 0, by simp)
(assume H : y ≠ 0,
have ypos : y > 0, from ne_zero_imp_pos H,
have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos,
have H2 : z * (x mod y) < z * y, from mul_lt_left zpos (mod_lt ypos),
quotient_unique zypos H1 H2
(calc
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : div_mod_eq⁻¹
... = z * (x div y * y + x mod y) : {div_mod_eq}
... = z * (x div y * y) + z * (x mod y) : !mul.distr_left
... = (x div y) * (z * y) + z * (x mod y) : {!mul.left_comm}))
--- something wrong with the term order
--- ... = (x div y) * (z * y) + z * (x mod y) : by simp))
theorem mod_mul_mul {z x y : } (zpos : z > 0) : (z * x) mod (z * y) = z * (x mod y) :=
by_cases -- (y = 0)
(assume H : y = 0, by simp)
(assume H : y ≠ 0,
have ypos : y > 0, from ne_zero_imp_pos H,
have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos,
have H2 : z * (x mod y) < z * y, from mul_lt_left zpos (mod_lt ypos),
remainder_unique zypos H1 H2
(calc
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : div_mod_eq⁻¹
... = z * (x div y * y + x mod y) : {div_mod_eq}
... = z * (x div y * y) + z * (x mod y) : !mul.distr_left
... = (x div y) * (z * y) + z * (x mod y) : {!mul.left_comm}))
theorem mod_one {x : } : x mod 1 = 0 :=
have H1 : x mod 1 < 1, from mod_lt succ_pos,
le_zero (lt_succ_imp_le H1)
-- add_rewrite mod_one
theorem mod_self {n : } : n mod n = 0 :=
case n (by simp)
(take n,
have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
from mod_mul_mul succ_pos,
(by simp) ▸ H)
-- add_rewrite mod_self
theorem div_one {n : } : n div 1 = n :=
have H : n div 1 * 1 + n mod 1 = n, from div_mod_eq⁻¹,
(by simp) ▸ H
-- add_rewrite div_one
theorem pos_div_self {n : } (H : n > 0) : n div n = 1 :=
have H1 : (n * 1) div (n * 1) = 1 div 1, from div_mul_mul H,
(by simp) ▸ H1
-- add_rewrite pos_div_self
-- Divides
-- -------
definition dvd (x y : ) : Prop := y mod x = 0
infix `|` := dvd
theorem dvd_iff_mod_eq_zero {x y : } : x | y ↔ y mod x = 0 :=
refl _
theorem dvd_imp_div_mul_eq {x y : } (H : y | x) : x div y * y = x :=
(calc
x = x div y * y + x mod y : div_mod_eq
... = x div y * y + 0 : {mp dvd_iff_mod_eq_zero H}
... = x div y * y : !add.zero_right)⁻¹
-- add_rewrite dvd_imp_div_mul_eq
theorem mul_eq_imp_dvd {z x y : } (H : z * y = x) : y | x :=
have H1 : z * y = x mod y + x div y * y, from
H ⬝ div_mod_eq ⬝ !add.comm,
have H2 : (z - x div y) * y = x mod y, from
calc
(z - x div y) * y = z * y - x div y * y : mul_sub_distr_right
... = x mod y + x div y * y - x div y * y : {H1}
... = x mod y : sub_add_left,
show x mod y = 0, from
by_cases
(assume yz : y = 0,
have xz : x = 0, from
calc
x = z * y : H⁻¹
... = z * 0 : {yz}
... = 0 : !mul.zero_right,
calc
x mod y = x mod 0 : {yz}
... = x : mod_zero
... = 0 : xz)
(assume ynz : y ≠ 0,
have ypos : y > 0, from ne_zero_imp_pos ynz,
have H3 : (z - x div y) * y < y, from H2⁻¹ ▸ mod_lt ypos,
have H4 : (z - x div y) * y < 1 * y, from !mul.one_left⁻¹ ▸ H3,
have H5 : z - x div y < 1, from mul_lt_cancel_right H4,
have H6 : z - x div y = 0, from le_zero (lt_succ_imp_le H5),
calc
x mod y = (z - x div y) * y : H2⁻¹
... = 0 * y : {H6}
... = 0 : !mul.zero_left)
theorem dvd_iff_exists_mul {x y : } : x | y ↔ ∃z, z * x = y :=
iff.intro
(assume H : x | y,
show ∃z, z * x = y, from exists_intro _ (dvd_imp_div_mul_eq H))
(assume H : ∃z, z * x = y,
obtain (z : ) (zx_eq : z * x = y), from H,
show x | y, from mul_eq_imp_dvd zx_eq)
theorem dvd_zero {n : } : n | 0 := sorry
-- (by simp) (dvd_iff_mod_eq_zero n 0)
-- add_rewrite dvd_zero
theorem zero_dvd_iff {n : } : (0 | n) = (n = 0) := sorry
-- (by simp) (dvd_iff_mod_eq_zero 0 n)
-- add_rewrite zero_dvd_iff
theorem one_dvd {n : } : 1 | n := sorry
-- (by simp) (dvd_iff_mod_eq_zero 1 n)
-- add_rewrite one_dvd
theorem dvd_self {n : } : n | n := sorry
-- (by simp) (dvd_iff_mod_eq_zero n n)
-- add_rewrite dvd_self
theorem dvd_mul_self_left {m n : } : m | (m * n) := sorry
-- (by simp) (dvd_iff_mod_eq_zero m (m * n))
-- add_rewrite dvd_mul_self_left
theorem dvd_mul_self_right {m n : } : m | (n * m) := sorry
-- (by simp) (dvd_iff_mod_eq_zero m (n * m))
-- add_rewrite dvd_mul_self_left
theorem dvd_trans {m n k : } (H1 : m | n) (H2 : n | k) : m | k :=
have H3 : n = n div m * m, by simp,
have H4 : k = k div n * (n div m) * m, from
calc
k = k div n * n : by simp
... = k div n * (n div m * m) : {H3}
... = k div n * (n div m) * m : !mul.assoc⁻¹,
mp (dvd_iff_exists_mul⁻¹) (exists_intro (k div n * (n div m)) (H4⁻¹))
theorem dvd_add {m n1 n2 : } (H1 : m | n1) (H2 : m | n2) : m | (n1 + n2) :=
have H : (n1 div m + n2 div m) * m = n1 + n2, by simp,
mp (dvd_iff_exists_mul⁻¹) (exists_intro _ H)
theorem dvd_add_cancel_left {m n1 n2 : } : m | (n1 + n2) → m | n1 → m | n2 :=
case_zero_pos m
(assume H1 : 0 | n1 + n2,
assume H2 : 0 | n1,
have H3 : n1 + n2 = 0, from zero_dvd_iff ▸ H1,
have H4 : n1 = 0, from zero_dvd_iff ▸ H2,
have H5 : n2 = 0, from mp (by simp) (H4 ▸ H3),
show 0 | n2, by simp)
(take m,
assume mpos : m > 0,
assume H1 : m | (n1 + n2),
assume H2 : m | n1,
have H3 : n1 + n2 = n1 + n2 div m * m, from
calc
n1 + n2 = (n1 + n2) div m * m : by simp
... = (n1 div m * m + n2) div m * m : by simp
... = (n2 + n1 div m * m) div m * m : {!add.comm}
... = (n2 div m + n1 div m) * m : {div_add_mul_self_right mpos}
... = n2 div m * m + n1 div m * m : !mul.distr_right
... = n1 div m * m + n2 div m * m : !add.comm
... = n1 + n2 div m * m : by simp,
have H4 : n2 = n2 div m * m, from add.cancel_left H3,
mp (dvd_iff_exists_mul⁻¹) (exists_intro _ (H4⁻¹)))
theorem dvd_add_cancel_right {m n1 n2 : } (H : m | (n1 + n2)) : m | n2 → m | n1 :=
dvd_add_cancel_left (!add.comm ▸ H)
theorem dvd_sub {m n1 n2 : } (H1 : m | n1) (H2 : m | n2) : m | (n1 - n2) :=
by_cases
(assume H3 : n1 ≥ n2,
have H4 : n1 = n1 - n2 + n2, from (add_sub_ge_left H3)⁻¹,
show m | n1 - n2, from dvd_add_cancel_right (H4 ▸ H1) H2)
(assume H3 : ¬ (n1 ≥ n2),
have H4 : n1 - n2 = 0, from le_imp_sub_eq_zero (lt_imp_le (not_le_imp_gt H3)),
show m | n1 - n2, from H4⁻¹ ▸ dvd_zero)
-- Gcd and lcm
-- -----------
-- ### definition of gcd
definition gcd_aux_measure (p : × ) : :=
pr2 p
definition gcd_aux_rec (p : × ) (gcd_aux' : × ) : :=
let x := pr1 p, y := pr2 p in
if y = 0 then x else gcd_aux' (pair y (x mod y))
definition gcd_aux : × := rec_measure 0 gcd_aux_measure gcd_aux_rec
theorem gcd_aux_decreasing (g1 g2 : × ) (p : × )
(H : ∀p', gcd_aux_measure p' < gcd_aux_measure p → g1 p' = g2 p') :
gcd_aux_rec p g1 = gcd_aux_rec p g2 :=
let x := pr1 p, y := pr2 p in
let p' := pair y (x mod y) in
let lhs := gcd_aux_rec p g1 in
let rhs := gcd_aux_rec p g2 in
show lhs = rhs, from
by_cases -- (y = 0)
(assume H1 : y = 0,
calc
lhs = x : if_pos H1
... = rhs : (if_pos H1)⁻¹)
(assume H1 : y ≠ 0,
have ypos : y > 0, from ne_zero_imp_pos H1,
have H2 : gcd_aux_measure p' = x mod y, from pr2_pair _ _,
have H3 : gcd_aux_measure p' < gcd_aux_measure p, from H2⁻¹ ▸ mod_lt ypos,
calc
lhs = g1 p' : if_neg H1
... = g2 p' : H _ H3
... = rhs : (if_neg H1)⁻¹)
theorem gcd_aux_spec (p : × ) : gcd_aux p =
let x := pr1 p, y := pr2 p in
if y = 0 then x else gcd_aux (pair y (x mod y)) :=
rec_measure_spec gcd_aux_rec gcd_aux_decreasing p
definition gcd (x y : ) : := gcd_aux (pair x y)
theorem gcd_def (x y : ) : gcd x y = if y = 0 then x else gcd y (x mod y) :=
let x' := pr1 (pair x y), y' := pr2 (pair x y) in
calc
gcd x y = if y' = 0 then x' else gcd_aux (pair y' (x' mod y'))
: gcd_aux_spec (pair x y)
... = if y = 0 then x else gcd y (x mod y) : rfl
theorem gcd_zero (x : ) : gcd x 0 = x :=
(gcd_def x 0) ⬝ (if_pos rfl)
-- add_rewrite gcd_zero
theorem gcd_pos (m : ) {n : } (H : n > 0) : gcd m n = gcd n (m mod n) :=
gcd_def m n ⬝ if_neg (pos_imp_ne_zero H)
theorem gcd_zero_left (x : ) : gcd 0 x = x :=
case x (by simp) (take x, (gcd_def _ _) ⬝ (by simp))
-- add_rewrite gcd_zero_left
theorem gcd_induct {P : → Prop} (m n : ) (H0 : ∀m, P m 0)
(H1 : ∀m n, 0 < n → P n (m mod n) → P m n) : P m n :=
have aux : ∀m, P m n, from
case_strong_induction_on n H0
(take n,
assume IH : ∀k, k ≤ n → ∀m, P m k,
take m,
have H2 : m mod succ n ≤ n, from lt_succ_imp_le (mod_lt succ_pos),
have H3 : P (succ n) (m mod succ n), from IH _ H2 _,
show P m (succ n), from H1 _ _ succ_pos H3),
aux m
theorem gcd_succ (m n : ) : gcd m (succ n) = gcd (succ n) (m mod succ n) :=
!gcd_def ⬝ if_neg !succ_ne_zero
theorem gcd_one (n : ) : gcd n 1 = 1 := sorry
-- (by simp) (gcd_succ n 0)
theorem gcd_self (n : ) : gcd n n = n := sorry
-- case n (by simp) (take n, (by simp) (gcd_succ (succ n) n))
theorem gcd_dvd (m n : ) : (gcd m n | m) ∧ (gcd m n | n) :=
gcd_induct m n
(take m,
show (gcd m 0 | m) ∧ (gcd m 0 | 0), by simp)
(take m n,
assume npos : 0 < n,
assume IH : (gcd n (m mod n) | n) ∧ (gcd n (m mod n) | (m mod n)),
have H : gcd n (m mod n) | (m div n * n + m mod n), from
dvd_add (dvd_trans (and.elim_left IH) dvd_mul_self_right) (and.elim_right IH),
have H1 : gcd n (m mod n) | m, from div_mod_eq⁻¹ ▸ H,
have gcd_eq : gcd n (m mod n) = gcd m n, from (gcd_pos _ npos)⁻¹,
show (gcd m n | m) ∧ (gcd m n | n), from gcd_eq ▸ (and.intro H1 (and.elim_left IH)))
theorem gcd_dvd_left (m n : ) : (gcd m n | m) := and.elim_left (gcd_dvd _ _)
theorem gcd_dvd_right (m n : ) : (gcd m n | n) := and.elim_right (gcd_dvd _ _)
-- add_rewrite gcd_dvd_left gcd_dvd_right
theorem gcd_greatest {m n k : } : k | m → k | n → k | (gcd m n) :=
gcd_induct m n
(take m, assume H : k | m, sorry) -- by simp)
(take m n,
assume npos : n > 0,
assume IH : k | n → k | (m mod n) → k | gcd n (m mod n),
assume H1 : k | m,
assume H2 : k | n,
have H3 : k | m div n * n + m mod n, from div_mod_eq ▸ H1,
have H4 : k | m mod n, from dvd_add_cancel_left H3 (dvd_trans H2 (by simp)),
have gcd_eq : gcd n (m mod n) = gcd m n, from (gcd_pos _ npos)⁻¹,
show k | gcd m n, from gcd_eq ▸ IH H2 H4)
end nat