2016-02-26 14:10:54 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Jakob von Raumer
|
|
|
|
|
|
|
|
Categories of (hprop value) ordered sets.
|
|
|
|
-/
|
|
|
|
import ..category algebra.order types.fin
|
|
|
|
|
|
|
|
open algebra category is_trunc is_equiv equiv iso
|
|
|
|
|
|
|
|
namespace category
|
|
|
|
|
|
|
|
section
|
|
|
|
universe variable l
|
2016-03-01 13:00:12 +00:00
|
|
|
parameters (A : Type.{l}) [HA : is_set A] [OA : weak_order.{l} A]
|
|
|
|
[Hle : Π a b : A, is_prop (a ≤ b)]
|
2016-02-26 14:10:54 +00:00
|
|
|
include A HA OA Hle
|
|
|
|
|
|
|
|
definition precategory_order [constructor] : precategory.{l l} A :=
|
|
|
|
begin
|
|
|
|
fconstructor,
|
|
|
|
{ intro a b, exact a ≤ b },
|
|
|
|
{ intro a b c, exact ge.trans },
|
|
|
|
{ intro a, apply le.refl },
|
2016-03-01 13:00:12 +00:00
|
|
|
do 5 (intros; apply is_prop.elim),
|
2016-02-26 14:10:54 +00:00
|
|
|
{ intros, apply is_trunc_succ }
|
|
|
|
end
|
|
|
|
|
|
|
|
local attribute [instance] precategory_order
|
|
|
|
|
|
|
|
definition category_order : category.{l l} A :=
|
|
|
|
begin
|
|
|
|
fapply category.mk precategory_order,
|
|
|
|
intros a b, fapply adjointify,
|
2016-03-01 13:00:12 +00:00
|
|
|
{ intro f, apply le.antisymm, apply iso.to_hom f, apply iso.to_inv f },
|
|
|
|
{ intro f, fapply iso_eq, esimp[precategory_order], apply is_prop.elim },
|
|
|
|
{ intro p, apply is_prop.elim }
|
2016-02-26 14:10:54 +00:00
|
|
|
end
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
end category
|