2014-06-16 21:11:26 +00:00
|
|
|
-- Correct version
|
2014-06-24 23:27:23 +00:00
|
|
|
check let bool [inline] := Type.{0},
|
|
|
|
and [inline] (p q : bool) := ∀ c : bool, (p → q → c) → c,
|
|
|
|
infixl `∧` 25 := and,
|
2014-06-16 21:11:26 +00:00
|
|
|
and_intro (p q : bool) (H1 : p) (H2 : q) : p ∧ q
|
|
|
|
:= λ (c : bool) (H : p → q → c), H H1 H2,
|
|
|
|
and_elim_left (p q : bool) (H : p ∧ q) : p
|
|
|
|
:= H p (λ (H1 : p) (H2 : q), H1),
|
|
|
|
and_elim_right (p q : bool) (H : p ∧ q) : q
|
|
|
|
:= H q (λ (H1 : p) (H2 : q), H2)
|
|
|
|
in and_intro
|
|
|
|
|
2014-06-24 23:27:23 +00:00
|
|
|
check let bool [inline] := Type.{0},
|
|
|
|
and [inline] (p q : bool) := ∀ c : bool, (p → q → c) → c,
|
|
|
|
infixl `∧` 25 := and,
|
|
|
|
and_intro [fact] (p q : bool) (H1 : p) (H2 : q) : q ∧ p
|
2014-06-16 21:11:26 +00:00
|
|
|
:= λ (c : bool) (H : p → q → c), H H1 H2,
|
|
|
|
and_elim_left (p q : bool) (H : p ∧ q) : p
|
|
|
|
:= H p (λ (H1 : p) (H2 : q), H1),
|
|
|
|
and_elim_right (p q : bool) (H : p ∧ q) : q
|
|
|
|
:= H q (λ (H1 : p) (H2 : q), H2)
|
|
|
|
in and_intro
|
|
|
|
|