105 lines
3.7 KiB
Text
105 lines
3.7 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Author: Jeremy Avigad
|
|||
|
|
|||
|
Set-based version of group_bigops.
|
|||
|
-/
|
|||
|
import .group_bigops data.set.finite
|
|||
|
open set
|
|||
|
|
|||
|
namespace algebra
|
|||
|
namespace set
|
|||
|
|
|||
|
variables {A B : Type}
|
|||
|
|
|||
|
/- Prod: product indexed by a set -/
|
|||
|
|
|||
|
section Prod
|
|||
|
variable [cmB : comm_monoid B]
|
|||
|
include cmB
|
|||
|
|
|||
|
noncomputable definition Prod (s : set A) (f : A → B) : B := algebra.finset.Prod (to_finset s) f
|
|||
|
|
|||
|
-- ∏ x ∈ s, f x
|
|||
|
notation `∏` binders `∈` s, r:(scoped f, prod s f) := r
|
|||
|
|
|||
|
theorem Prod_empty (f : A → B) : Prod ∅ f = 1 :=
|
|||
|
by rewrite [↑Prod, to_finset_empty]
|
|||
|
|
|||
|
theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Prod s f = 1 :=
|
|||
|
by rewrite [↑Prod, to_finset_of_not_finite nfins]
|
|||
|
|
|||
|
theorem Prod_mul (s : set A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
|
|||
|
by rewrite [↑Prod, finset.Prod_mul]
|
|||
|
|
|||
|
theorem Prod_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) :
|
|||
|
Prod (insert a s) f = Prod s f :=
|
|||
|
by_cases
|
|||
|
(suppose finite s,
|
|||
|
assert (#finset a ∈ set.to_finset s), by rewrite mem_to_finset_eq; apply H,
|
|||
|
by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_mem f this])
|
|||
|
(assume nfs : ¬ finite s,
|
|||
|
assert ¬ finite (insert a s), from assume H, nfs (finite_of_finite_insert H),
|
|||
|
by rewrite [Prod_of_not_finite nfs, Prod_of_not_finite this])
|
|||
|
|
|||
|
theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
|
|||
|
Prod (insert a s) f = f a * Prod s f :=
|
|||
|
assert (#finset a ∉ set.to_finset s), by rewrite mem_to_finset_eq; apply H,
|
|||
|
by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_not_mem f this]
|
|||
|
|
|||
|
theorem Prod_union (f : A → B) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
|
|||
|
(disj : s₁ ∩ s₂ = ∅) :
|
|||
|
Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f :=
|
|||
|
begin
|
|||
|
rewrite [↑Prod, to_finset_union],
|
|||
|
apply finset.Prod_union,
|
|||
|
apply finset.eq_of_to_set_eq_to_set,
|
|||
|
rewrite [finset.to_set_inter, *to_set_to_finset, finset.to_set_empty, disj]
|
|||
|
end
|
|||
|
|
|||
|
theorem Prod_ext {s : set A} {f g : A → B} (H : ∀{x}, x ∈ s → f x = g x) : Prod s f = Prod s g :=
|
|||
|
by_cases
|
|||
|
(suppose finite s,
|
|||
|
by esimp [Prod]; apply finset.Prod_ext; intro x; rewrite [mem_to_finset_eq]; apply H)
|
|||
|
(assume nfs : ¬ finite s,
|
|||
|
by rewrite [*Prod_of_not_finite nfs])
|
|||
|
|
|||
|
theorem Prod_one (s : set A) : Prod s (λ x, 1) = (1:B) :=
|
|||
|
by rewrite [↑Prod, finset.Prod_one]
|
|||
|
end Prod
|
|||
|
|
|||
|
/- Sum -/
|
|||
|
|
|||
|
section Sum
|
|||
|
variable [acmB : add_comm_monoid B]
|
|||
|
include acmB
|
|||
|
local attribute add_comm_monoid.to_comm_monoid [trans-instance]
|
|||
|
|
|||
|
noncomputable definition Sum (s : set A) (f : A → B) : B := Prod s f
|
|||
|
|
|||
|
-- ∑ x ∈ s, f x
|
|||
|
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
|
|||
|
|
|||
|
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
|
|||
|
theorem Sum_add (s : set A) (f g : A → B) :
|
|||
|
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g
|
|||
|
|
|||
|
theorem Sum_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) :
|
|||
|
Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H
|
|||
|
theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
|
|||
|
Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H
|
|||
|
theorem Sum_union (f : A → B) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
|
|||
|
(disj : s₁ ∩ s₂ = ∅) :
|
|||
|
Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj
|
|||
|
theorem Sum_ext {s : set A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) :
|
|||
|
Sum s f = Sum s g := Prod_ext H
|
|||
|
|
|||
|
theorem Sum_zero (s : set A) : Sum s (λ x, 0) = (0:B) := Prod_one s
|
|||
|
end Sum
|
|||
|
|
|||
|
end set
|
|||
|
|
|||
|
|
|||
|
end algebra
|