54 lines
1.8 KiB
Text
54 lines
1.8 KiB
Text
|
/-
|
||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
Author: Leonardo de Moura
|
||
|
|
||
|
Define squash type (aka propositional truncation) using quotients.
|
||
|
This definition is slightly better than defining the squash type ∥A∥ as (nonempty A).
|
||
|
If we define it using (nonempty A), then we can only lift functions A → B to ∥A∥ → B
|
||
|
when B is a proposition. With quotients, we can lift to any B type that is a subsingleton
|
||
|
(i.e., has at most one element).
|
||
|
-/
|
||
|
open quot
|
||
|
|
||
|
private definition eqv {A : Type} (a b : A) : Prop := true
|
||
|
local infix ~ := eqv
|
||
|
|
||
|
private lemma eqv_refl {A : Type} : ∀ a : A, a ~ a :=
|
||
|
λ a, trivial
|
||
|
|
||
|
private lemma eqv_symm {A : Type} : ∀ a b : A, a ~ b → b ~ a :=
|
||
|
λ a b h, trivial
|
||
|
|
||
|
private lemma eqv_trans {A : Type} : ∀ a b c : A, a ~ b → b ~ c → a ~ c :=
|
||
|
λ a b c h₁ h₂, trivial
|
||
|
|
||
|
definition squash_setoid (A : Type) : setoid A :=
|
||
|
setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv_refl A) (@eqv_symm A) (@eqv_trans A))
|
||
|
|
||
|
definition squash (A : Type) : Type :=
|
||
|
quot (squash_setoid A)
|
||
|
|
||
|
namespace squash
|
||
|
local attribute squash_setoid [instance]
|
||
|
|
||
|
notation `∥`:0 A `∥` := squash A
|
||
|
|
||
|
definition mk {A : Type} (a : A) : ∥A∥ :=
|
||
|
⟦a⟧
|
||
|
|
||
|
protected definition irrelevant {A : Type} : ∀ a b : ∥A∥, a = b :=
|
||
|
λ a b, quot.induction_on₂ a b (λ a b, quot.sound trivial)
|
||
|
|
||
|
definition lift {A B : Type} [h : subsingleton B] (f : A → B) : ∥A∥ → B :=
|
||
|
λ s, quot.lift_on s f (λ a₁ a₂ r, subsingleton.elim (f a₁) (f a₂))
|
||
|
end squash
|
||
|
|
||
|
open squash decidable
|
||
|
|
||
|
definition decidable_eq_squash [instance] (A : Type) : decidable_eq ∥A∥ :=
|
||
|
λ a b, inl (squash.irrelevant a b)
|
||
|
|
||
|
definition subsingleton_squash [instance] (A : Type) : subsingleton ∥A∥ :=
|
||
|
subsingleton.intro (@squash.irrelevant A)
|