2015-01-05 12:40:23 -08:00
|
|
|
open nat decidable
|
|
|
|
|
2015-02-25 16:20:44 -08:00
|
|
|
definition has_decidable_eq : ∀ a b : nat, decidable (a = b)
|
|
|
|
| has_decidable_eq 0 0 := inl rfl
|
|
|
|
| has_decidable_eq (a+1) 0 := inr (λ h, nat.no_confusion h)
|
|
|
|
| has_decidable_eq 0 (b+1) := inr (λ h, nat.no_confusion h)
|
|
|
|
| has_decidable_eq (a+1) (b+1) :=
|
|
|
|
if H : a = b
|
|
|
|
then inl (eq.rec_on H rfl)
|
|
|
|
else inr (λ h : a+1 = b+1, nat.no_confusion h (λ e : a = b, absurd e H))
|
2015-01-05 12:40:23 -08:00
|
|
|
|
|
|
|
check has_decidable_eq
|
|
|
|
print definition has_decidable_eq
|