lean2/tests/lean/run/group3.lean

259 lines
8.4 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Jeremy Avigad. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jeremy Avigad, Leonardo de Moura
-- algebra.group
-- =============
-- Various structures with 1, *, inv, including groups.
import logic.core.eq logic.core.connectives
import data.unit data.sigma data.prod
import algebra.function algebra.binary
open eq
namespace algebra
-- classes for notation
-- --------------------
inductive has_mul [class] (A : Type) : Type := mk : (A → A → A) → has_mul A
inductive has_one [class] (A : Type) : Type := mk : A → has_one A
inductive has_inv [class] (A : Type) : Type := mk : (A → A) → has_inv A
definition mul {A : Type} {s : has_mul A} (a b : A) : A := has_mul.rec (fun f, f) s a b
definition one {A : Type} {s : has_one A} : A := has_one.rec (fun o, o) s
definition inv {A : Type} {s : has_inv A} (a : A) : A := has_inv.rec (fun i, i) s a
infix `*` := mul
postfix `⁻¹` := inv
notation 1 := one
-- semigroup
-- ---------
inductive semigroup [class] (A : Type) : Type :=
mk : Π mul: A → A → A,
(∀a b c : A, (mul (mul a b) c = mul a (mul b c))) →
semigroup A
namespace semigroup
section
parameters {A : Type} {s : semigroup A}
definition mul (a b : A) : A := semigroup.rec (λmul assoc, mul) s a b
definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) :=
semigroup.rec (λmul assoc, assoc) s a b c
end
end semigroup
section
parameters {A : Type} {s : semigroup A}
definition semigroup_has_mul [instance] : including A s, has_mul A := has_mul.mk (semigroup.mul)
theorem mul_assoc [instance] {a b c : A} : including A s, a * b * c = a * (b * c) :=
semigroup.assoc
end
-- comm_semigroup
-- --------------
inductive comm_semigroup [class] (A : Type) : Type :=
mk : Π mul: A → A → A,
(∀a b c : A, (mul (mul a b) c = mul a (mul b c))) →
(∀a b : A, mul a b = mul b a) →
comm_semigroup A
namespace comm_semigroup
section
parameters {A : Type} {s : comm_semigroup A}
definition mul (a b : A) : A := comm_semigroup.rec (λmul assoc comm, mul) s a b
definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) :=
comm_semigroup.rec (λmul assoc comm, assoc) s a b c
definition comm {a b : A} : mul a b = mul b a :=
comm_semigroup.rec (λmul assoc comm, comm) s a b
end
end comm_semigroup
section
parameters {A : Type} {s : comm_semigroup A}
definition comm_semigroup_semigroup [instance] : including A s, semigroup A :=
semigroup.mk (comm_semigroup.mul) (@comm_semigroup.assoc _ _)
theorem mul_comm {a b : A} : including A s, a * b = b * a := comm_semigroup.comm
theorem mul_left_comm {a b c : A} : including A s, a * (b * c) = b * (a * c) :=
binary.left_comm (@mul_comm) (@mul_assoc _ _) a b c
end
-- monoid
-- ------
inductive monoid [class] (A : Type) : Type :=
mk : Π mul: A → A → A,
Π one : A,
(∀a b c : A, (mul (mul a b) c = mul a (mul b c))) →
(∀a : A, mul a one = a) →
(∀a : A, mul one a = a) →
monoid A
namespace monoid
section
parameters {A : Type} {s : monoid A}
definition mul (a b : A) : A := monoid.rec (λmul one assoc right_id left_id, mul) s a b
definition one : A := monoid.rec (λmul one assoc right_id left_id, one) s
definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) :=
monoid.rec (λmul one assoc right_id left_id, assoc) s a b c
definition right_id {a : A} : mul a one = a :=
monoid.rec (λmul one assoc right_id left_id, right_id) s a
definition left_id {a : A} : mul one a = a :=
monoid.rec (λmul one assoc right_id left_id, left_id) s a
end
end monoid
section
parameters {A : Type} {s : monoid A}
definition monoid_has_one [instance] : including A s, has_one A := has_one.mk (monoid.one)
definition monoid_semigroup [instance] : including A s, semigroup A :=
semigroup.mk (monoid.mul) (@monoid.assoc _ _)
theorem mul_right_id {a : A} : including s, a * one = a := monoid.right_id
theorem mul_left_id {a : A} : including s, one * a = a := monoid.left_id
end
-- comm_monoid
-- -----------
inductive comm_monoid [class] (A : Type) : Type :=
mk : Π mul: A → A → A,
Π one : A,
(∀a b c : A, (mul (mul a b) c = mul a (mul b c))) →
(∀a : A, mul a one = a) →
(∀a : A, mul one a = a) →
(∀a b : A, mul a b = mul b a) →
comm_monoid A
namespace comm_monoid
section
parameters {A : Type} {s : comm_monoid A}
definition mul (a b : A) : A := comm_monoid.rec (λmul one assoc right_id left_id comm, mul) s a b
definition one : A := comm_monoid.rec (λmul one assoc right_id left_id comm, one) s
definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) :=
comm_monoid.rec (λmul one assoc right_id left_id comm, assoc) s a b c
definition right_id {a : A} : mul a one = a :=
comm_monoid.rec (λmul one assoc right_id left_id comm, right_id) s a
definition left_id {a : A} : mul one a = a :=
comm_monoid.rec (λmul one assoc right_id left_id comm, left_id) s a
definition comm {a b : A} : mul a b = mul b a :=
comm_monoid.rec (λmul one assoc right_id left_id comm, comm) s a b
end
end comm_monoid
section
parameters {A : Type} {s : comm_monoid A}
definition comm_monoid_monoid [instance] : including A s, monoid A :=
monoid.mk (comm_monoid.mul) (comm_monoid.one) (@comm_monoid.assoc _ _)
(@comm_monoid.right_id _ _) (@comm_monoid.left_id _ _)
definition comm_monoid_comm_semigroup [instance] : including A s, comm_semigroup A :=
comm_semigroup.mk (comm_monoid.mul) (@comm_monoid.assoc _ _) (@comm_monoid.comm _ _)
end
-- bundled structures
-- ------------------
inductive Semigroup [class] : Type := mk : Π carrier : Type, semigroup carrier → Semigroup
namespace Semigroup
section
parameter (S : Semigroup)
definition carrier : Type := Semigroup.rec (λc s, c) S
definition struc : semigroup carrier := Semigroup.rec (λc s, s) S
end
end Semigroup
coercion Semigroup.carrier
instance Semigroup.struc
inductive CommSemigroup [class] : Type :=
mk : Π carrier : Type, comm_semigroup carrier → CommSemigroup
namespace CommSemigroup
section
parameter (S : CommSemigroup)
definition carrier : Type := CommSemigroup.rec (λc s, c) S
definition struc : comm_semigroup carrier := CommSemigroup.rec (λc s, s) S
end
end CommSemigroup
coercion CommSemigroup.carrier
instance CommSemigroup.struc
inductive Monoid [class] : Type := mk : Π carrier : Type, monoid carrier → Monoid
namespace Monoid
section
parameter (S : Monoid)
definition carrier : Type := Monoid.rec (λc s, c) S
definition struc : monoid carrier := Monoid.rec (λc s, s) S
end
end Monoid
coercion Monoid.carrier
instance Monoid.struc
inductive CommMonoid : Type := mk : Π carrier : Type, comm_monoid carrier → CommMonoid
namespace CommMonoid
section
parameter (S : CommMonoid)
definition carrier : Type := CommMonoid.rec (λc s, c) S
definition struc : comm_monoid carrier := CommMonoid.rec (λc s, s) S
end
end CommMonoid
coercion CommMonoid.carrier
instance CommMonoid.struc
end algebra
open algebra
section examples
theorem test1 {S : Semigroup} (a b c d : S) : a * (b * c) * d = a * b * (c * d) :=
calc
a * (b * c) * d = a * b * c * d : {symm mul_assoc}
... = a * b * (c * d) : mul_assoc
theorem test2 {M : CommSemigroup} (a b : M) : a * b = a * b := rfl
theorem test3 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) :=
calc
a * (b * c) * d = a * b * c * d : {symm mul_assoc}
... = a * b * (c * d) : mul_assoc
-- for test4b to work, we need instances at the level of the bundled structures as well
definition Monoid_Semigroup [instance] (M : Monoid) : Semigroup :=
Semigroup.mk (Monoid.carrier M) _
theorem test4 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) :=
test1 a b c d
theorem test5 {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
calc
a * 1 * b * c = a * b * c : {mul_right_id}
... = a * (b * c) : mul_assoc
theorem test5a {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
calc
a * 1 * b * c = a * b * c : {mul_right_id}
... = a * (b * c) : mul_assoc
theorem test5b {A : Type} {M : monoid A} (a b c : A) : a * 1 * b * c = a * (b * c) :=
calc
a * 1 * b * c = a * b * c : {mul_right_id}
... = a * (b * c) : mul_assoc
theorem test6 {M : CommMonoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
calc
a * 1 * b * c = a * b * c : {mul_right_id}
... = a * (b * c) : mul_assoc
end examples