2015-05-07 11:56:42 -07:00
|
|
|
definition rr [constructor] {A : Type} {a : A} := eq.refl a
|
2015-05-04 14:23:04 -07:00
|
|
|
|
|
|
|
constants f g : Π {A : Type}, A → A
|
|
|
|
|
|
|
|
example (A : Type) (a b : A) (C : A → Type) (H : C a) (f g : C a → C a) : f = g → f (eq.rec H rr) = g H :=
|
|
|
|
begin
|
|
|
|
intros,
|
|
|
|
esimp,
|
|
|
|
state,
|
|
|
|
congruence,
|
|
|
|
assumption
|
|
|
|
end
|
|
|
|
|
|
|
|
example (A : Type) (a b : A) (C : A → Type) (H : C a) (f g : C a → C a) : f = g → f (eq.rec_on rr H) = g H :=
|
|
|
|
begin
|
|
|
|
intros,
|
|
|
|
esimp,
|
|
|
|
state,
|
|
|
|
congruence,
|
|
|
|
assumption
|
|
|
|
end
|