2015-03-06 23:48:48 +00:00
|
|
|
import data.nat
|
|
|
|
|
|
|
|
example (a b c : Prop) : a ∧ b ↔ b ∧ a :=
|
|
|
|
begin
|
|
|
|
apply iff.intro,
|
|
|
|
{intro H,
|
|
|
|
match H with
|
|
|
|
| and.intro H₁ H₂ := and.intro H₂ H₁
|
|
|
|
end},
|
|
|
|
{intro H,
|
|
|
|
match H with
|
|
|
|
| and.intro H₁ H₂ := and.intro H₂ H₁
|
|
|
|
end},
|
|
|
|
end
|
|
|
|
|
|
|
|
open nat
|
|
|
|
|
|
|
|
example : ∀ (a b : nat), a = b → b = a
|
2016-07-09 17:29:34 +00:00
|
|
|
| a a (eq.refl a) := rfl
|