2014-08-22 00:56:18 +00:00
|
|
|
|
import logic data.nat data.prod
|
|
|
|
|
|
2014-09-03 23:00:38 +00:00
|
|
|
|
open nat prod
|
|
|
|
|
open decidable
|
2014-08-22 00:56:18 +00:00
|
|
|
|
|
|
|
|
|
variable modulo (x : ℕ) (y : ℕ) : ℕ
|
|
|
|
|
infixl `mod`:70 := modulo
|
|
|
|
|
|
|
|
|
|
variable gcd_aux : ℕ × ℕ → ℕ
|
|
|
|
|
|
|
|
|
|
definition gcd (x y : ℕ) : ℕ := gcd_aux (pair x y)
|
|
|
|
|
|
2014-09-08 05:22:04 +00:00
|
|
|
|
theorem gcd_def (x y : ℕ) : gcd x y = @ite (y = 0) (nat.has_decidable_eq (pr2 (pair x y)) 0) nat x (gcd y (x mod y)) :=
|
2014-08-22 00:56:18 +00:00
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
theorem gcd_succ (m n : ℕ) : gcd m (succ n) = gcd (succ n) (m mod succ n) :=
|
2014-10-02 01:50:17 +00:00
|
|
|
|
eq.trans (gcd_def _ _) (if_neg !succ_ne_zero)
|