2015-08-16 21:22:02 +00:00
|
|
|
|
open nat
|
|
|
|
|
definition seq_diagram (A : ℕ → Type) : Type := (Πn, A n → A (succ n))
|
|
|
|
|
variables (A : ℕ → Type) (f : seq_diagram A)
|
|
|
|
|
include f
|
|
|
|
|
|
2015-10-13 22:39:03 +00:00
|
|
|
|
definition shift_diag [unfold_full] (k : ℕ) : seq_diagram (λn, A (k + n)) :=
|
2015-08-16 21:22:02 +00:00
|
|
|
|
λn a, f (k + n) a
|
|
|
|
|
|
|
|
|
|
example (n k : ℕ) (b : A (k + n)) : shift_diag A f k n b = sorry :=
|
|
|
|
|
begin
|
|
|
|
|
esimp,
|
|
|
|
|
state,
|
|
|
|
|
apply sorry
|
|
|
|
|
end
|