lean2/tests/lean/640.hlean

27 lines
662 B
Text
Raw Normal View History

2015-05-29 15:49:10 -07:00
import hit.type_quotient
open type_quotient eq sum
constants {A : Type} (R : A → A → Type)
local abbreviation C := type_quotient R
definition f [unfold-c 2] (a : A) (x : unit) : C :=
!class_of a
inductive S : C → C → Type :=
| Rmk {} : Π(a : A) (x : unit), S (f a x) (!class_of a)
set_option pp.notation false
set_option pp.beta false
definition rec {P : type_quotient S → Type} (x : type_quotient S) : P x :=
begin
induction x with c c c' H,
{ induction c with b b b' H,
{ apply sorry},
{ apply sorry}},
{ cases H, esimp, induction x,
{ state, esimp, state, esimp, state, apply sorry}},
end