69 lines
2.4 KiB
Text
69 lines
2.4 KiB
Text
|
Set: pp::colors
|
|||
|
Set: pp::unicode
|
|||
|
Imported 'tactic'
|
|||
|
Assumed: list
|
|||
|
Assumed: nil
|
|||
|
Assumed: cons
|
|||
|
Assumed: map
|
|||
|
Assumed: map_cons
|
|||
|
Assumed: map_nil
|
|||
|
Visit, depth: 1, map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil)) = cons 2 (cons 3 nil)
|
|||
|
Visit, depth: 2, @eq
|
|||
|
Visit, depth: 2, map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil))
|
|||
|
Visit, depth: 3, @map
|
|||
|
Step: @map ===> @map
|
|||
|
Visit, depth: 3, λ x : ℕ, x + 1
|
|||
|
Visit, depth: 4, 3::1 + 1
|
|||
|
Visit, depth: 5, Nat::add
|
|||
|
Visit, depth: 5, 3::1
|
|||
|
Step: 3::1 ===> 3::1
|
|||
|
Visit, depth: 5, 1
|
|||
|
Step: 3::1 + 1 ===> 3::1 + 1
|
|||
|
Step: λ x : ℕ, x + 1 ===> λ x : ℕ, x + 1
|
|||
|
Visit, depth: 3, cons 1 (cons 2 nil)
|
|||
|
Visit, depth: 4, @cons
|
|||
|
Step: @cons ===> @cons
|
|||
|
Visit, depth: 4, 1
|
|||
|
Visit, depth: 4, cons 2 nil
|
|||
|
Visit, depth: 5, 2
|
|||
|
Visit, depth: 5, nil
|
|||
|
Visit, depth: 6, @nil
|
|||
|
Step: @nil ===> @nil
|
|||
|
Step: nil ===> nil
|
|||
|
Step: cons 2 nil ===> cons 2 nil
|
|||
|
Step: cons 1 (cons 2 nil) ===> cons 1 (cons 2 nil)
|
|||
|
Rewrite using: map_cons
|
|||
|
map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil)) ===> cons ((λ x : ℕ, x + 1) 1) (map (λ x : ℕ, x + 1) (cons 2 nil))
|
|||
|
Visit, depth: 3, cons ((λ x : ℕ, x + 1) 1) (map (λ x : ℕ, x + 1) (cons 2 nil))
|
|||
|
Visit, depth: 4, (λ x : ℕ, x + 1) 1
|
|||
|
Visit, depth: 5, 1
|
|||
|
Visit, depth: 5, 2
|
|||
|
Step: (λ x : ℕ, x + 1) 1 ===> 2
|
|||
|
Visit, depth: 4, map (λ x : ℕ, x + 1) (cons 2 nil)
|
|||
|
Rewrite using: map_cons
|
|||
|
map (λ x : ℕ, x + 1) (cons 2 nil) ===> cons ((λ x : ℕ, x + 1) 2) (map (λ x : ℕ, x + 1) nil)
|
|||
|
Visit, depth: 5, cons ((λ x : ℕ, x + 1) 2) (map (λ x : ℕ, x + 1) nil)
|
|||
|
Visit, depth: 6, (λ x : ℕ, x + 1) 2
|
|||
|
Visit, depth: 7, 2
|
|||
|
Visit, depth: 7, 3
|
|||
|
Step: (λ x : ℕ, x + 1) 2 ===> 3
|
|||
|
Visit, depth: 6, map (λ x : ℕ, x + 1) nil
|
|||
|
Rewrite using: map_nil
|
|||
|
map (λ x : ℕ, x + 1) nil ===> nil
|
|||
|
Step: map (λ x : ℕ, x + 1) nil ===> nil
|
|||
|
Visit, depth: 6, cons 3 nil
|
|||
|
Visit, depth: 7, 3
|
|||
|
Step: cons 3 nil ===> cons 3 nil
|
|||
|
Step: cons ((λ x : ℕ, x + 1) 2) (map (λ x : ℕ, x + 1) nil) ===> cons 3 nil
|
|||
|
Step: map (λ x : ℕ, x + 1) (cons 2 nil) ===> cons 3 nil
|
|||
|
Visit, depth: 4, cons 2 (cons 3 nil)
|
|||
|
Visit, depth: 5, 2
|
|||
|
Step: cons 2 (cons 3 nil) ===> cons 2 (cons 3 nil)
|
|||
|
Step: cons ((λ x : ℕ, x + 1) 1) (map (λ x : ℕ, x + 1) (cons 2 nil)) ===> cons 2 (cons 3 nil)
|
|||
|
Step: map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil)) ===> cons 2 (cons 3 nil)
|
|||
|
Rewrite using: eq_id
|
|||
|
cons 2 (cons 3 nil) = cons 2 (cons 3 nil) ===> ⊤
|
|||
|
Visit, depth: 2, ⊤
|
|||
|
Step: map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil)) = cons 2 (cons 3 nil) ===> ⊤
|
|||
|
Proved: T1
|