2014-08-25 02:58:48 +00:00
|
|
|
import logic
|
2014-09-04 23:36:06 +00:00
|
|
|
open tactic
|
2014-07-14 01:53:02 +00:00
|
|
|
|
|
|
|
inductive inh (A : Type) : Type :=
|
2014-09-04 23:36:06 +00:00
|
|
|
intro : A -> inh A
|
2014-07-14 01:53:02 +00:00
|
|
|
|
2014-09-04 23:36:06 +00:00
|
|
|
instance inh.intro
|
2014-07-14 01:53:02 +00:00
|
|
|
|
2014-07-22 16:43:18 +00:00
|
|
|
theorem inh_bool [instance] : inh Prop
|
2014-09-04 23:36:06 +00:00
|
|
|
:= inh.intro true
|
2014-07-14 01:53:02 +00:00
|
|
|
|
|
|
|
theorem inh_fun [instance] {A B : Type} (H : inh B) : inh (A → B)
|
2014-09-04 23:36:06 +00:00
|
|
|
:= inh.rec (λ b, inh.intro (λ a : A, b)) H
|
2014-07-14 01:53:02 +00:00
|
|
|
|
|
|
|
definition assump := eassumption; now
|
|
|
|
|
|
|
|
set_option elaborator.local_instances false
|
|
|
|
tactic_hint [inh] assump
|
|
|
|
tactic_hint assump
|
|
|
|
|
|
|
|
theorem tst {A B : Type} (H : inh B) : inh (A → B → B)
|
|
|
|
|
|
|
|
theorem T1 {A : Type} (a : A) : inh A
|
|
|
|
|
2014-07-22 16:43:18 +00:00
|
|
|
theorem T2 : inh Prop
|