lean2/tests/lean/inv_del.lean

17 lines
361 B
Text
Raw Normal View History

import logic data.nat.basic
open nat
inductive vec (A : Type) : nat → Type :=
vnil : vec A zero,
vone : A → vec A (succ zero),
vtwo : A → A → vec A (succ (succ zero))
namespace vec
theorem eone {A : Type} {P : vec A (succ zero) → Type} (H : Π a, P (vone a)) (v : vec A (succ zero)) : P v :=
begin
cases v,
-- apply (H a)
end
end vec