lean2/hott/types/fiber.hlean

92 lines
2.7 KiB
Text
Raw Normal View History

/-
2015-04-19 19:58:13 +00:00
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about fibers
-/
2015-04-19 19:58:13 +00:00
import .sigma .eq
structure fiber {A B : Type} (f : A → B) (b : B) :=
(point : A)
(point_eq : f point = b)
open equiv sigma sigma.ops eq
namespace fiber
variables {A B : Type} {f : A → B} {b : B}
definition sigma_char (f : A → B) (b : B) : fiber f b ≃ (Σ(a : A), f a = b) :=
begin
fapply equiv.MK,
{intro x, exact ⟨point x, point_eq x⟩},
{intro x, exact (fiber.mk x.1 x.2)},
{intro x, cases x, apply idp},
{intro x, cases x, apply idp},
end
definition fiber_eq_equiv (x y : fiber f b)
: (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) :=
begin
apply equiv.trans,
apply eq_equiv_fn_eq_of_equiv, apply sigma_char,
apply equiv.trans,
apply sigma_eq_equiv,
apply sigma_equiv_sigma_id,
intro p,
apply pathover_eq_equiv_Fl,
end
2015-04-19 19:58:13 +00:00
definition fiber_eq {x y : fiber f b} (p : point x = point y)
(q : point_eq x = ap f p ⬝ point_eq y) : x = y :=
to_inv !fiber_eq_equiv ⟨p, q⟩
end fiber
open function is_equiv is_trunc
namespace fiber
/- Theorem 4.7.6 -/
variables {A : Type} {P Q : A → Type}
/- Note that the map on total spaces/sigmas is just sigma_functor id -/
definition fiber_total_equiv (f : Πa, P a → Q a) {a : A} (q : Q a)
: fiber (sigma_functor id f) ⟨a , q⟩ ≃ fiber (f a) q :=
calc
fiber (sigma_functor id f) ⟨a , q⟩
≃ Σ(w : Σx, P x), ⟨w.1 , f w.1 w.2 ⟩ = ⟨a , q⟩
: sigma_char
... ≃ Σ(x : A), Σ(p : P x), ⟨x , f x p⟩ = ⟨a , q⟩
: sigma_assoc_equiv
... ≃ Σ(x : A), Σ(p : P x), Σ(H : x = a), f x p =[H] q
:
begin
apply sigma_equiv_sigma_id, intro x,
apply sigma_equiv_sigma_id, intro p,
apply sigma_eq_equiv
end
... ≃ Σ(x : A), Σ(H : x = a), Σ(p : P x), f x p =[H] q
:
begin
apply sigma_equiv_sigma_id, intro x,
apply sigma_comm_equiv
end
... ≃ Σ(w : Σx, x = a), Σ(p : P w.1), f w.1 p =[w.2] q
: sigma_assoc_equiv
... ≃ Σ(p : P (center (Σx, x=a)).1), f (center (Σx, x=a)).1 p =[(center (Σx, x=a)).2] q
: sigma_equiv_of_is_contr_left
... ≃ Σ(p : P a), f a p =[idpath a] q
: equiv_of_eq idp
... ≃ Σ(p : P a), f a p = q
:
begin
apply sigma_equiv_sigma_id, intro p,
apply pathover_idp
end
... ≃ fiber (f a) q
: sigma_char
end fiber