2014-08-24 19:58:48 -07:00
|
|
|
import logic
|
2014-09-03 16:00:38 -07:00
|
|
|
open tactic
|
2014-07-08 16:55:11 -07:00
|
|
|
|
2015-04-27 17:46:13 -07:00
|
|
|
notation `(` h `|` r:(foldl `|` (e r, tactic.or_else r e) h) `)` := r
|
|
|
|
|
2015-04-06 09:24:09 -07:00
|
|
|
definition my_tac := repeat (apply @and.intro | apply @eq.refl)
|
2014-07-08 16:55:11 -07:00
|
|
|
tactic_hint my_tac
|
|
|
|
|
|
|
|
theorem T1 {A : Type} {B : Type} (a : A) (b c : B) : a = a ∧ b = b ∧ c = c
|