lean2/tests/lean/run/new_obtain3.lean

16 lines
604 B
Text
Raw Normal View History

import data.set
open set function eq.ops
variables {X Y Z : Type}
lemma image_compose (f : Y → X) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
ext (take z,
iff.intro
(assume Hz : z ∈ (f ∘ g) '[a],
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
have Hgx : g x ∈ g '[a], from mem_image Hx₁ rfl,
show z ∈ f '[g '[a]], from mem_image Hgx Hx₂)
(assume Hz : z ∈ f '[g '[a]],
obtain y [x (Hz₁ : x ∈ a) (Hz₂ : g x = y)] (Hy₂ : f y = z), from Hz,
show z ∈ (f ∘ g) '[a], from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))