lean2/tests/lean/run/class4.lean

93 lines
2.3 KiB
Text
Raw Normal View History

import logic
inductive nat : Type :=
zero : nat,
succ : nat → nat
open eq
namespace nat
definition add (x y : nat)
:= nat.rec x (λ n r, succ r) y
infixl `+`:65 := add
theorem add_zero_left (x : nat) : x + zero = x
:= refl _
theorem add_succ_left (x y : nat) : x + (succ y) = succ (x + y)
:= refl _
definition is_zero (x : nat)
:= nat.rec true (λ n r, false) x
theorem is_zero_zero : is_zero zero
:= eq_true_elim (refl _)
theorem not_is_zero_succ (x : nat) : ¬ is_zero (succ x)
:= eq_false_elim (refl _)
theorem dichotomy (m : nat) : m = zero (∃ n, m = succ n)
:= nat.rec
(or.intro_left _ (refl zero))
(λ m H, or.intro_right _ (exists_intro m (refl (succ m))))
m
theorem is_zero_to_eq (x : nat) (H : is_zero x) : x = zero
:= or.elim (dichotomy x)
(assume Hz : x = zero, Hz)
(assume Hs : (∃ n, x = succ n),
exists_elim Hs (λ (w : nat) (Hw : x = succ w),
absurd H (eq.subst (symm Hw) (not_is_zero_succ w))))
theorem is_not_zero_to_eq {x : nat} (H : ¬ is_zero x) : ∃ n, x = succ n
:= or.elim (dichotomy x)
(assume Hz : x = zero,
absurd (eq.subst (symm Hz) is_zero_zero) H)
(assume Hs, Hs)
theorem not_zero_add (x y : nat) (H : ¬ is_zero y) : ¬ is_zero (x + y)
:= exists_elim (is_not_zero_to_eq H)
(λ (w : nat) (Hw : y = succ w),
have H1 : x + y = succ (x + w), from
calc x + y = x + succ w : {Hw}
... = succ (x + w) : refl _,
have H2 : ¬ is_zero (succ (x + w)), from
not_is_zero_succ (x+w),
subst (symm H1) H2)
inductive not_zero [class] (x : nat) : Prop :=
intro : ¬ is_zero x → not_zero x
theorem not_zero_not_is_zero {x : nat} (H : not_zero x) : ¬ is_zero x
:= not_zero.rec (λ H1, H1) H
theorem not_zero_add_right [instance] (x y : nat) (H : not_zero y) : not_zero (x + y)
:= not_zero.intro (not_zero_add x y (not_zero_not_is_zero H))
theorem not_zero_succ [instance] (x : nat) : not_zero (succ x)
:= not_zero.intro (not_is_zero_succ x)
constant dvd : Π (x y : nat) {H : not_zero y}, nat
constants a b : nat
set_option pp.implicit true
reducible add
check dvd a (succ b)
check (λ H : not_zero b, dvd a b)
check (succ zero)
check a + (succ zero)
check dvd a (a + (succ b))
reducible [off] add
check dvd a (a + (succ b))
reducible add
check dvd a (a + (succ b))
reducible [off] add
check dvd a (a + (succ b))
end nat