2014-10-20 22:58:11 +00:00
|
|
|
import hott.path tools.tactic
|
|
|
|
|
|
|
|
open path tactic
|
|
|
|
open path (induction_on)
|
|
|
|
|
|
|
|
definition concat_whisker2 {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
|
2014-10-21 23:28:36 +00:00
|
|
|
(whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') :=
|
2014-10-20 22:58:11 +00:00
|
|
|
begin
|
2014-10-21 00:10:16 +00:00
|
|
|
apply induction_on b,
|
|
|
|
apply induction_on a,
|
2014-10-21 23:28:36 +00:00
|
|
|
apply (concat_1p _)⁻¹,
|
2014-10-20 22:58:11 +00:00
|
|
|
end
|