lean2/hott/algebra/precategory/morphism.hlean

283 lines
12 KiB
Text
Raw Normal View History

2014-12-12 04:14:53 +00:00
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jakob von Raumer
import .basic hott.types.sigma
open path precategory sigma sigma.ops equiv is_equiv function truncation
namespace morphism
variables {ob : Type} [C : precategory ob] include C
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
inductive is_section [class] (f : a ⟶ b) : Type
:= mk : ∀{g}, g ∘ f ≈ id → is_section f
inductive is_retraction [class] (f : a ⟶ b) : Type
:= mk : ∀{g}, f ∘ g ≈ id → is_retraction f
inductive is_iso [class] (f : a ⟶ b) : Type
:= mk : ∀{g}, g ∘ f ≈ id → f ∘ g ≈ id → is_iso f
definition retraction_of (f : a ⟶ b) [H : is_section f] : hom b a :=
is_section.rec (λg h, g) H
definition section_of (f : a ⟶ b) [H : is_retraction f] : hom b a :=
is_retraction.rec (λg h, g) H
definition inverse (f : a ⟶ b) [H : is_iso f] : hom b a :=
is_iso.rec (λg h1 h2, g) H
postfix `⁻¹` := inverse
theorem inverse_compose (f : a ⟶ b) [H : is_iso f] : f⁻¹ ∘ f ≈ id :=
is_iso.rec (λg h1 h2, h1) H
theorem compose_inverse (f : a ⟶ b) [H : is_iso f] : f ∘ f⁻¹ ≈ id :=
is_iso.rec (λg h1 h2, h2) H
theorem retraction_compose (f : a ⟶ b) [H : is_section f] : retraction_of f ∘ f ≈ id :=
is_section.rec (λg h, h) H
theorem compose_section (f : a ⟶ b) [H : is_retraction f] : f ∘ section_of f ≈ id :=
is_retraction.rec (λg h, h) H
theorem iso_imp_retraction [instance] (f : a ⟶ b) [H : is_iso f] : is_section f :=
is_section.mk !inverse_compose
theorem iso_imp_section [instance] (f : a ⟶ b) [H : is_iso f] : is_retraction f :=
is_retraction.mk !compose_inverse
theorem id_is_iso [instance] : is_iso (ID a) :=
is_iso.mk !id_compose !id_compose
theorem inverse_is_iso [instance] (f : a ⟶ b) [H : is_iso f] : is_iso (f⁻¹) :=
is_iso.mk !compose_inverse !inverse_compose
theorem left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a}
(Hl : g ∘ f ≈ id) (Hr : f ∘ g' ≈ id) : g ≈ g' :=
calc
g ≈ g ∘ id : !id_right
... ≈ g ∘ f ∘ g' : Hr
... ≈ (g ∘ f) ∘ g' : !assoc
... ≈ id ∘ g' : Hl
... ≈ g' : id_left
theorem retraction_eq_intro [H : is_section f] (H2 : f ∘ h ≈ id) : retraction_of f ≈ h
:= left_inverse_eq_right_inverse !retraction_compose H2
theorem section_eq_intro [H : is_retraction f] (H2 : h ∘ f ≈ id) : section_of f ≈ h
:= (left_inverse_eq_right_inverse H2 !compose_section)⁻¹
theorem inverse_eq_intro_right [H : is_iso f] (H2 : f ∘ h ≈ id) : f⁻¹ ≈ h
:= left_inverse_eq_right_inverse !inverse_compose H2
theorem inverse_eq_intro_left [H : is_iso f] (H2 : h ∘ f ≈ id) : f⁻¹ ≈ h
:= (left_inverse_eq_right_inverse H2 !compose_inverse)⁻¹
theorem section_eq_retraction (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f] :
retraction_of f ≈ section_of f :=
retraction_eq_intro !compose_section
theorem section_retraction_imp_iso (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f]
: is_iso f :=
is_iso.mk ((section_eq_retraction f) ▹ (retraction_compose f)) (compose_section f)
theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H ≈ @inverse _ _ _ _ f H' :=
inverse_eq_intro_left !inverse_compose
theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ ≈ f :=
inverse_eq_intro_right !inverse_compose
theorem retraction_of_id : retraction_of (ID a) ≈ id :=
retraction_eq_intro !id_compose
theorem section_of_id : section_of (ID a) ≈ id :=
section_eq_intro !id_compose
theorem iso_of_id : ID a⁻¹ ≈ id :=
inverse_eq_intro_left !id_compose
theorem composition_is_section [instance] [Hf : is_section f] [Hg : is_section g]
: is_section (g ∘ f) :=
have aux : retraction_of g ∘ g ∘ f ≈ (retraction_of g ∘ g) ∘ f,
from !assoc,
is_section.mk
(calc
(retraction_of f ∘ retraction_of g) ∘ g ∘ f
≈ retraction_of f ∘ retraction_of g ∘ g ∘ f : assoc
... ≈ retraction_of f ∘ ((retraction_of g ∘ g) ∘ f) : aux
... ≈ retraction_of f ∘ id ∘ f : {retraction_compose g}
... ≈ retraction_of f ∘ f : id_left f
... ≈ id : retraction_compose f)
theorem composition_is_retraction [instance] (Hf : is_retraction f) (Hg : is_retraction g)
: is_retraction (g ∘ f) :=
have aux : f ∘ section_of f ∘ section_of g ≈ (f ∘ section_of f) ∘ section_of g,
from !assoc,
is_retraction.mk
(calc
(g ∘ f) ∘ section_of f ∘ section_of g
≈ g ∘ f ∘ section_of f ∘ section_of g : assoc
... ≈ g ∘ (f ∘ section_of f) ∘ section_of g : aux
... ≈ g ∘ id ∘ section_of g : compose_section f
... ≈ g ∘ section_of g : id_left (section_of g)
... ≈ id : compose_section)
theorem composition_is_inverse [instance] (Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) :=
!section_retraction_imp_iso
structure isomorphic (a b : ob) :=
(iso : hom a b)
[is_iso : is_iso iso]
infix `≅`:50 := morphism.isomorphic
namespace isomorphic
-- openrelation
instance [persistent] is_iso
definition refl (a : ob) : a ≅ a :=
mk id
definition symm ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a :=
mk (inverse (iso H))
definition trans ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c :=
mk (iso H2 ∘ iso H1)
--theorem is_equivalence_eq [instance] (T : Type) : is_equivalence isomorphic :=
--is_equivalence.mk (is_reflexive.mk refl) (is_symmetric.mk symm) (is_transitive.mk trans)
end isomorphic
inductive is_mono [class] (f : a ⟶ b) : Type :=
mk : (∀c (g h : hom c a), f ∘ g ≈ f ∘ h → g ≈ h) → is_mono f
inductive is_epi [class] (f : a ⟶ b) : Type :=
mk : (∀c (g h : hom b c), g ∘ f ≈ h ∘ f → g ≈ h) → is_epi f
theorem mono_elim [H : is_mono f] {g h : c ⟶ a} (H2 : f ∘ g ≈ f ∘ h) : g ≈ h
:= is_mono.rec (λH3, H3 c g h H2) H
theorem epi_elim [H : is_epi f] {g h : b ⟶ c} (H2 : g ∘ f ≈ h ∘ f) : g ≈ h
:= is_epi.rec (λH3, H3 c g h H2) H
theorem section_is_mono [instance] (f : a ⟶ b) [H : is_section f] : is_mono f :=
is_mono.mk
(λ c g h H,
calc
g ≈ id ∘ g : id_left
... ≈ (retraction_of f ∘ f) ∘ g : retraction_compose f
... ≈ retraction_of f ∘ f ∘ g : assoc
... ≈ retraction_of f ∘ f ∘ h : H
... ≈ (retraction_of f ∘ f) ∘ h : assoc
... ≈ id ∘ h : retraction_compose f
... ≈ h : id_left)
theorem retraction_is_epi [instance] (f : a ⟶ b) [H : is_retraction f] : is_epi f :=
is_epi.mk
(λ c g h H,
calc
g ≈ g ∘ id : id_right
... ≈ g ∘ f ∘ section_of f : compose_section f
... ≈ (g ∘ f) ∘ section_of f : assoc
... ≈ (h ∘ f) ∘ section_of f : H
... ≈ h ∘ f ∘ section_of f : assoc
... ≈ h ∘ id : compose_section f
... ≈ h : id_right)
--these theorems are now proven automatically using type classes
--should they be instances?
theorem id_is_mono : is_mono (ID a)
theorem id_is_epi : is_epi (ID a)
theorem composition_is_mono [instance] [Hf : is_mono f] [Hg : is_mono g] : is_mono (g ∘ f) :=
is_mono.mk
(λ d h₁ h₂ H,
have H2 : g ∘ (f ∘ h₁) ≈ g ∘ (f ∘ h₂),
from calc g ∘ (f ∘ h₁) ≈ (g ∘ f) ∘ h₁ : !assoc
... ≈ (g ∘ f) ∘ h₂ : H
... ≈ g ∘ (f ∘ h₂) : !assoc, mono_elim (mono_elim H2))
theorem composition_is_epi [instance] [Hf : is_epi f] [Hg : is_epi g] : is_epi (g ∘ f) :=
is_epi.mk
(λ d h₁ h₂ H,
have H2 : (h₁ ∘ g) ∘ f ≈ (h₂ ∘ g) ∘ f,
from calc (h₁ ∘ g) ∘ f ≈ h₁ ∘ g ∘ f : !assoc
... ≈ h₂ ∘ g ∘ f : H
... ≈ (h₂ ∘ g) ∘ f: !assoc, epi_elim (epi_elim H2))
end morphism
namespace morphism
--rewrite lemmas for inverses, modified from
--https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v
namespace iso
section
variables {ob : Type} [C : precategory ob] include C
variables {a b c d : ob} (f : b ⟶ a)
(r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b)
(g : d ⟶ c)
variable [Hq : is_iso q] include Hq
theorem compose_pV : q ∘ q⁻¹ ≈ id := !compose_inverse
theorem compose_Vp : q⁻¹ ∘ q ≈ id := !inverse_compose
theorem compose_V_pp : q⁻¹ ∘ (q ∘ p) ≈ p :=
calc
q⁻¹ ∘ (q ∘ p) ≈ (q⁻¹ ∘ q) ∘ p : assoc (q⁻¹) q p
... ≈ id ∘ p : inverse_compose q
... ≈ p : id_left p
theorem compose_p_Vp : q ∘ (q⁻¹ ∘ g) ≈ g :=
calc
q ∘ (q⁻¹ ∘ g) ≈ (q ∘ q⁻¹) ∘ g : assoc q (q⁻¹) g
... ≈ id ∘ g : compose_inverse q
... ≈ g : id_left g
theorem compose_pp_V : (r ∘ q) ∘ q⁻¹ ≈ r :=
calc
(r ∘ q) ∘ q⁻¹ ≈ r ∘ q ∘ q⁻¹ : assoc r q (q⁻¹)⁻¹
... ≈ r ∘ id : compose_inverse q
... ≈ r : id_right r
theorem compose_pV_p : (f ∘ q⁻¹) ∘ q ≈ f :=
calc
(f ∘ q⁻¹) ∘ q ≈ f ∘ q⁻¹ ∘ q : assoc f (q⁻¹) q⁻¹
... ≈ f ∘ id : inverse_compose q
... ≈ f : id_right f
theorem inv_pp [H' : is_iso p] : (q ∘ p)⁻¹ ≈ p⁻¹ ∘ q⁻¹ :=
have H1 : (p⁻¹ ∘ q⁻¹) ∘ q ∘ p ≈ p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)), from assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹,
have H2 : (p⁻¹) ∘ (q⁻¹ ∘ (q ∘ p)) ≈ p⁻¹ ∘ p, from ap _ (compose_V_pp q p),
have H3 : p⁻¹ ∘ p ≈ id, from inverse_compose p,
inverse_eq_intro_left (H1 ⬝ H2 ⬝ H3)
--the proof using calc is hard for the unifier (needs ~90k steps)
-- inverse_eq_intro_left
-- (calc
-- (p⁻¹ ∘ (q⁻¹)) ∘ q ∘ p = p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)) : assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹
-- ... = (p⁻¹) ∘ p : congr_arg (λx, p⁻¹ ∘ x) (compose_V_pp q p)
-- ... = id : inverse_compose p)
theorem inv_Vp [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ ≈ g⁻¹ ∘ q := inverse_involutive q ▹ inv_pp (q⁻¹) g
theorem inv_pV [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ ≈ f ∘ q⁻¹ := inverse_involutive f ▹ inv_pp q (f⁻¹)
theorem inv_VV [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ ≈ r ∘ q := inverse_involutive r ▹ inv_Vp q (r⁻¹)
end
section
variables {ob : Type} {C : precategory ob} include C
variables {d c b a : ob}
{i : b ⟶ c} {f : b ⟶ a}
{r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b}
{g : d ⟶ c} {h : c ⟶ b}
{x : b ⟶ d} {z : a ⟶ c}
{y : d ⟶ b} {w : c ⟶ a}
variable [Hq : is_iso q] include Hq
theorem moveR_Mp (H : y ≈ q⁻¹ ∘ g) : q ∘ y ≈ g := H⁻¹ ▹ compose_p_Vp q g
theorem moveR_pM (H : w ≈ f ∘ q⁻¹) : w ∘ q ≈ f := H⁻¹ ▹ compose_pV_p f q
theorem moveR_Vp (H : z ≈ q ∘ p) : q⁻¹ ∘ z ≈ p := H⁻¹ ▹ compose_V_pp q p
theorem moveR_pV (H : x ≈ r ∘ q) : x ∘ q⁻¹ ≈ r := H⁻¹ ▹ compose_pp_V r q
theorem moveL_Mp (H : q⁻¹ ∘ g ≈ y) : g ≈ q ∘ y := moveR_Mp (H⁻¹)⁻¹
theorem moveL_pM (H : f ∘ q⁻¹ ≈ w) : f ≈ w ∘ q := moveR_pM (H⁻¹)⁻¹
theorem moveL_Vp (H : q ∘ p ≈ z) : p ≈ q⁻¹ ∘ z := moveR_Vp (H⁻¹)⁻¹
theorem moveL_pV (H : r ∘ q ≈ x) : r ≈ x ∘ q⁻¹ := moveR_pV (H⁻¹)⁻¹
theorem moveL_1V (H : h ∘ q ≈ id) : h ≈ q⁻¹ := inverse_eq_intro_left H⁻¹
theorem moveL_V1 (H : q ∘ h ≈ id) : h ≈ q⁻¹ := inverse_eq_intro_right H⁻¹
theorem moveL_1M (H : i ∘ q⁻¹ ≈ id) : i ≈ q := moveL_1V H ⬝ inverse_involutive q
theorem moveL_M1 (H : q⁻¹ ∘ i ≈ id) : i ≈ q := moveL_V1 H ⬝ inverse_involutive q
theorem moveR_1M (H : id ≈ i ∘ q⁻¹) : q ≈ i := moveL_1M (H⁻¹)⁻¹
theorem moveR_M1 (H : id ≈ q⁻¹ ∘ i) : q ≈ i := moveL_M1 (H⁻¹)⁻¹
theorem moveR_1V (H : id ≈ h ∘ q) : q⁻¹ ≈ h := moveL_1V (H⁻¹)⁻¹
theorem moveR_V1 (H : id ≈ q ∘ h) : q⁻¹ ≈ h := moveL_V1 (H⁻¹)⁻¹
end
end iso
end morphism