92 lines
3.5 KiB
Text
92 lines
3.5 KiB
Text
|
/-
|
|||
|
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
|
|||
|
Module: algebra.precategory.yoneda
|
|||
|
Author: Floris van Doorn
|
|||
|
-/
|
|||
|
|
|||
|
--note: modify definition in category.set
|
|||
|
import .constructions .morphism
|
|||
|
|
|||
|
open eq precategory equiv is_equiv is_trunc
|
|||
|
open is_trunc.trunctype funext precategory.ops prod.ops
|
|||
|
|
|||
|
set_option pp.beta true
|
|||
|
|
|||
|
namespace yoneda
|
|||
|
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : a5 ⟶ a6) (f2 : a4 ⟶ a5) (f3 : a3 ⟶ a4) (f4 : a2 ⟶ a3) (f5 : a1 ⟶ a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
|
|||
|
calc
|
|||
|
(f1 ∘ f2) ∘ f3 ∘ f4 ∘ f5 = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc
|
|||
|
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc
|
|||
|
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc
|
|||
|
... = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 : assoc
|
|||
|
|
|||
|
--disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop
|
|||
|
definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set :=
|
|||
|
functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2)
|
|||
|
(λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1))
|
|||
|
proof (λ(x : Cᵒᵖ ×c C), eq_of_homotopy (λ(h : homset x.1 x.2), !id_left ⬝ !id_right)) qed
|
|||
|
-- (λ(x y z : Cᵒᵖ ×c C) (g : y ⟶ z) (f : x ⟶ y), eq_of_homotopy (λ(h : hom x.1 x.2), representable_functor_assoc g.2 f.2 h f.1 g.1))
|
|||
|
begin
|
|||
|
intros (x, y, z, g, f), apply eq_of_homotopy, intro h,
|
|||
|
exact (representable_functor_assoc g.2 f.2 h f.1 g.1),
|
|||
|
end
|
|||
|
end yoneda
|
|||
|
|
|||
|
attribute precategory_functor [instance] [reducible]
|
|||
|
namespace nat_trans
|
|||
|
open morphism functor
|
|||
|
variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) (H : Π(a : C), is_iso (η a))
|
|||
|
include H
|
|||
|
definition nat_trans_inverse : G ⟹ F :=
|
|||
|
nat_trans.mk
|
|||
|
(λc, (η c)⁻¹)
|
|||
|
(λc d f,
|
|||
|
begin
|
|||
|
apply iso.con_inv_eq_of_eq_con,
|
|||
|
apply concat, rotate_left 1, apply assoc,
|
|||
|
apply iso.eq_inv_con_of_con_eq,
|
|||
|
apply inverse,
|
|||
|
apply naturality,
|
|||
|
end)
|
|||
|
|
|||
|
definition nat_trans_left_inverse : nat_trans_inverse η H ∘ η = nat_trans.id :=
|
|||
|
begin
|
|||
|
fapply (apD011 nat_trans.mk),
|
|||
|
apply eq_of_homotopy, intro c, apply inverse_compose,
|
|||
|
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, fapply is_hset.elim
|
|||
|
end
|
|||
|
|
|||
|
definition nat_trans_right_inverse : η ∘ nat_trans_inverse η H = nat_trans.id :=
|
|||
|
begin
|
|||
|
fapply (apD011 nat_trans.mk),
|
|||
|
apply eq_of_homotopy, intro c, apply compose_inverse,
|
|||
|
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, fapply is_hset.elim
|
|||
|
end
|
|||
|
|
|||
|
definition nat_trans_is_iso.mk : is_iso η :=
|
|||
|
is_iso.mk (nat_trans_left_inverse η H) (nat_trans_right_inverse η H)
|
|||
|
|
|||
|
end nat_trans
|
|||
|
|
|||
|
-- Coq uses unit/counit definitions as basic
|
|||
|
|
|||
|
-- open yoneda precategory.product precategory.opposite functor morphism
|
|||
|
-- --universe levels are given explicitly because Lean uses 6 variables otherwise
|
|||
|
|
|||
|
-- structure adjoint.{u v} [C D : Precategory.{u v}] (F : C ⇒ D) (G : D ⇒ C) : Type.{max u v} :=
|
|||
|
-- (nat_iso : (representable_functor D) ∘f (prod_functor (opposite_functor F) (functor.ID D)) ⟹
|
|||
|
-- (representable_functor C) ∘f (prod_functor (functor.ID (Cᵒᵖ)) G))
|
|||
|
-- (is_iso_nat_iso : is_iso nat_iso)
|
|||
|
|
|||
|
-- infix `⊣`:55 := adjoint
|
|||
|
|
|||
|
-- namespace adjoint
|
|||
|
-- universe variables l1 l2
|
|||
|
-- variables [C D : Precategory.{l1 l2}] (F : C ⇒ D) (G : D ⇒ C)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
-- end adjoint
|