lean2/library/algebra/group_power.lean

137 lines
4.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
The power operation on monoids and groups. We separate this from group, because it depends on
nat, which in turn depends on other parts of algebra.
We have "pow a n" for natural number powers, and "ipow a i" for integer powers. The notation
a^n is used for the first, but users can locally redefine it to ipow when needed.
Note: power adopts the convention that 0^0=1.
-/
import data.nat.basic data.int.basic
namespace algebra
variables {A : Type}
/- monoid -/
section monoid
open nat
variable [s : monoid A]
include s
definition pow (a : A) : → A
| 0 := 1
| (n+1) := pow n * a
infix `^` := pow
theorem pow_zero (a : A) : a^0 = 1 := rfl
theorem pow_succ (a : A) (n : ) : a^(succ n) = a^n * a := rfl
theorem pow_succ' (a : A) : ∀n, a^(succ n) = a * a^n
| 0 := by rewrite [pow_succ, *pow_zero, one_mul, mul_one]
| (succ n) := by rewrite [pow_succ, pow_succ' at {1}, pow_succ, mul.assoc]
theorem one_pow : ∀ n : , 1^n = (1:A)
| 0 := rfl
| (succ n) := by rewrite [pow_succ, mul_one, one_pow]
theorem pow_one (a : A) : a^1 = a := !one_mul
theorem pow_add (a : A) (m : ) : ∀ n, a^(m + n) = a^m * a^n
| 0 := by rewrite [nat.add_zero, pow_zero, mul_one]
| (succ n) := by rewrite [add_succ, *pow_succ, pow_add, mul.assoc]
theorem pow_mul (a : A) (m : ) : ∀ n, a^(m * n) = (a^m)^n
| 0 := by rewrite [nat.mul_zero, pow_zero]
| (succ n) := by rewrite [nat.mul_succ, pow_add, pow_succ, pow_mul]
theorem pow_comm (a : A) (m n : ) : a^m * a^n = a^n * a^m :=
by rewrite [-*pow_add, nat.add.comm]
end monoid
/- commutative monoid -/
section comm_monoid
open nat
variable [s : comm_monoid A]
include s
theorem mul_pow (a b : A) : ∀ n, (a * b)^n = a^n * b^n
| 0 := by rewrite [*pow_zero, mul_one]
| (succ n) := by rewrite [*pow_succ, mul_pow, *mul.assoc, mul.left_comm a]
end comm_monoid
section group
variable [s : group A]
include s
section nat
open nat
theorem inv_pow (a : A) : ∀n, (a⁻¹)^n = (a^n)⁻¹
| 0 := by rewrite [*pow_zero, one_inv]
| (succ n) := by rewrite [pow_succ, pow_succ', inv_pow, mul_inv]
theorem pow_sub (a : A) {m n : } (H : m ≥ n) : a^(m - n) = a^m * (a^n)⁻¹ :=
assert H1 : m - n + n = m, from nat.sub_add_cancel H,
have H2 : a^(m - n) * a^n = a^m, by rewrite [-pow_add, H1],
eq_mul_inv_of_mul_eq H2
theorem pow_inv_comm (a : A) : ∀m n, (a⁻¹)^m * a^n = a^n * (a⁻¹)^m
| 0 n := by rewrite [*pow_zero, one_mul, mul_one]
| m 0 := by rewrite [*pow_zero, one_mul, mul_one]
| (succ m) (succ n) := by rewrite [pow_succ at {1}, pow_succ' at {1}, pow_succ, pow_succ',
*mul.assoc, inv_mul_cancel_left, mul_inv_cancel_left, pow_inv_comm]
end nat
open nat int algebra
definition ipow (a : A) : → A
| (of_nat n) := a^n
| -[n +1] := (a^(nat.succ n))⁻¹
private lemma ipow_add_aux (a : A) (m n : nat) :
ipow a ((of_nat m) + -[n +1]) = ipow a (of_nat m) * ipow a (-[n +1]) :=
or.elim (nat.lt_or_ge m (nat.succ n))
(assume H : (#nat m < nat.succ n),
assert H1 : (#nat nat.succ n - m > nat.zero), from nat.sub_pos_of_lt H,
calc
ipow a ((of_nat m) + -[n +1]) = ipow a (sub_nat_nat m (nat.succ n)) : rfl
... = ipow a (-[nat.pred (nat.sub (nat.succ n) m) +1]) : {sub_nat_nat_of_lt H}
... = (pow a (nat.succ (nat.pred (nat.sub (nat.succ n) m))))⁻¹ : rfl
... = (pow a (nat.succ n) * (pow a m)⁻¹)⁻¹ :
by rewrite [nat.succ_pred_of_pos H1, pow_sub a (nat.le_of_lt H)]
... = pow a m * (pow a (nat.succ n))⁻¹ :
by rewrite [mul_inv, inv_inv]
... = ipow a (of_nat m) * ipow a (-[n +1]) : rfl)
(assume H : (#nat m ≥ nat.succ n),
calc
ipow a ((of_nat m) + -[n +1]) = ipow a (sub_nat_nat m (nat.succ n)) : rfl
... = ipow a (#nat m - nat.succ n) : {sub_nat_nat_of_ge H}
... = pow a m * (pow a (nat.succ n))⁻¹ : pow_sub a H
... = ipow a (of_nat m) * ipow a (-[n +1]) : rfl)
theorem ipow_add (a : A) : ∀i j : int, ipow a (i + j) = ipow a i * ipow a j
| (of_nat m) (of_nat n) := !pow_add
| (of_nat m) -[n +1] := !ipow_add_aux
| -[ m+1] (of_nat n) := by rewrite [int.add.comm, ipow_add_aux, ↑ipow, -*inv_pow, pow_inv_comm]
| -[ m+1] -[n+1] :=
calc
ipow a (-[ m+1] + -[n+1]) = (a^(#nat nat.succ m + nat.succ n))⁻¹ : rfl
... = (a^(nat.succ m))⁻¹ * (a^(nat.succ n))⁻¹ : by rewrite [pow_add, pow_comm, mul_inv]
... = ipow a (-[ m+1]) * ipow a (-[n+1]) : rfl
theorem ipow_comm (a : A) (i j : ) : ipow a i * ipow a j = ipow a j * ipow a i :=
by rewrite [-*ipow_add, int.add.comm]
end group
end algebra