lean2/library/data/int/order.lean

399 lines
15 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jeremy Avigad
The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring
and transfer the results.
-/
import .basic algebra.ordered_ring
open nat
open decidable
open int eq.ops
namespace int
private definition nonneg (a : ) : Prop := int.cases_on a (take n, true) (take n, false)
definition le (a b : ) : Prop := nonneg (sub b a)
definition lt (a b : ) : Prop := le (add a 1) b
infix [priority int.prio] - := int.sub
infix [priority int.prio] <= := int.le
infix [priority int.prio] ≤ := int.le
infix [priority int.prio] < := int.lt
local attribute nonneg [reducible]
private definition decidable_nonneg [instance] (a : ) : decidable (nonneg a) := int.cases_on a _ _
definition decidable_le [instance] (a b : ) : decidable (a ≤ b) := decidable_nonneg _
definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _
private theorem nonneg.elim {a : } : nonneg a → ∃n : , a = n :=
int.cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H)
private theorem nonneg_or_nonneg_neg (a : ) : nonneg a nonneg (-a) :=
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
theorem le.intro {a b : } {n : } (H : a + n = b) : a ≤ b :=
have H1 : b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹,
have H2 : nonneg n, from true.intro,
show nonneg (b - a), from H1⁻¹ ▸ H2
theorem le.elim {a b : } (H : a ≤ b) : ∃n : , a + n = b :=
obtain (n : ) (H1 : b - a = n), from nonneg.elim H,
exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹))
theorem le.total (a b : ) : a ≤ b b ≤ a :=
or.elim (nonneg_or_nonneg_neg (b - a))
(assume H, or.inl H)
(assume H : nonneg (-(b - a)),
have H0 : -(b - a) = a - b, from neg_sub b a,
have H1 : nonneg (a - b), from H0 ▸ H, -- too bad: can't do it in one step
or.inr H1)
theorem of_nat_le_of_nat_of_le {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
obtain (k : ) (Hk : m + k = n), from nat.le.elim H,
le.intro (Hk ▸ (of_nat_add m k)⁻¹)
theorem le_of_of_nat_le_of_nat {m n : } (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
obtain (k : ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
have H1 : m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk),
nat.le.intro H1
theorem of_nat_le_of_nat (m n : ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le
theorem lt_add_succ (a : ) (n : ) : a < a + succ n :=
le.intro (show a + 1 + n = a + succ n, from
calc
a + 1 + n = a + (1 + n) : add.assoc
... = a + (n + 1) : nat.add.comm
... = a + succ n : rfl)
theorem lt.intro {a b : } {n : } (H : a + succ n = b) : a < b :=
H ▸ lt_add_succ a n
theorem lt.elim {a b : } (H : a < b) : ∃n : , a + succ n = b :=
obtain (n : ) (Hn : a + 1 + n = b), from le.elim H,
have H2 : a + succ n = b, from
calc
a + succ n = a + 1 + n : by simp
... = b : Hn,
exists.intro n H2
theorem of_nat_lt_of_nat (n m : ) : of_nat n < of_nat m ↔ n < m :=
calc
of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl
... ↔ of_nat (nat.succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl
... ↔ nat.succ n ≤ m : of_nat_le_of_nat
... ↔ n < m : iff.symm (lt_iff_succ_le _ _)
theorem lt_of_of_nat_lt_of_nat {m n : } (H : of_nat m < of_nat n) : #nat m < n :=
iff.mp !of_nat_lt_of_nat H
theorem of_nat_lt_of_nat_of_lt {m n : } (H : #nat m < n) : of_nat m < of_nat n :=
iff.mpr !of_nat_lt_of_nat H
/- show that the integers form an ordered additive group -/
theorem le.refl (a : ) : a ≤ a :=
le.intro (add_zero a)
theorem le.trans {a b c : } (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
obtain (n : ) (Hn : a + n = b), from le.elim H1,
obtain (m : ) (Hm : b + m = c), from le.elim H2,
have H3 : a + of_nat (n + m) = c, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : {of_nat_add n m}
... = a + n + m : (add.assoc a n m)⁻¹
... = b + m : {Hn}
... = c : Hm,
le.intro H3
theorem le.antisymm : ∀ {a b : }, a ≤ b → b ≤ a → a = b :=
take a b : , assume (H₁ : a ≤ b) (H₂ : b ≤ a),
obtain (n : ) (Hn : a + n = b), from le.elim H₁,
obtain (m : ) (Hm : b + m = a), from le.elim H₂,
have H₃ : a + of_nat (n + m) = a + 0, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : of_nat_add
... = a + n + m : add.assoc
... = b + m : Hn
... = a : Hm
... = a + 0 : add_zero,
have H₄ : of_nat (n + m) = of_nat 0, from add.left_cancel H₃,
have H₅ : n + m = 0, from of_nat.inj H₄,
have H₆ : n = 0, from nat.eq_zero_of_add_eq_zero_right H₅,
show a = b, from
calc
a = a + 0 : add_zero
... = a + n : H₆
... = b : Hn
theorem lt.irrefl (a : ) : ¬ a < a :=
(assume H : a < a,
obtain (n : ) (Hn : a + succ n = a), from lt.elim H,
have H2 : a + succ n = a + 0, from
calc
a + succ n = a : Hn
... = a + 0 : by simp,
have H3 : nat.succ n = 0, from add.left_cancel H2,
have H4 : nat.succ n = 0, from of_nat.inj H3,
absurd H4 !succ_ne_zero)
theorem ne_of_lt {a b : } (H : a < b) : a ≠ b :=
(assume H2 : a = b, absurd (H2 ▸ H) (lt.irrefl b))
theorem le_of_lt {a b : } (H : a < b) : a ≤ b :=
obtain (n : ) (Hn : a + succ n = b), from lt.elim H,
le.intro Hn
theorem lt_iff_le_and_ne (a b : ) : a < b ↔ (a ≤ b ∧ a ≠ b) :=
iff.intro
(assume H, and.intro (le_of_lt H) (ne_of_lt H))
(assume H,
have H1 : a ≤ b, from and.elim_left H,
have H2 : a ≠ b, from and.elim_right H,
obtain (n : ) (Hn : a + n = b), from le.elim H1,
have H3 : n ≠ 0, from (assume H' : n = 0, H2 (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero H3,
lt.intro (Hk ▸ Hn))
theorem le_iff_lt_or_eq (a b : ) : a ≤ b ↔ (a < b a = b) :=
iff.intro
(assume H,
by_cases
(assume H1 : a = b, or.inr H1)
(assume H1 : a ≠ b,
obtain (n : ) (Hn : a + n = b), from le.elim H,
have H2 : n ≠ 0, from (assume H' : n = 0, H1 (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero H2,
or.inl (lt.intro (Hk ▸ Hn))))
(assume H,
or.elim H
(assume H1, le_of_lt H1)
(assume H1, H1 ▸ !le.refl))
theorem lt_succ (a : ) : a < a + 1 :=
le.refl (a + 1)
theorem add_le_add_left {a b : } (H : a ≤ b) (c : ) : c + a ≤ c + b :=
obtain (n : ) (Hn : a + n = b), from le.elim H,
have H2 : c + a + n = c + b, from
calc
c + a + n = c + (a + n) : add.assoc c a n
... = c + b : {Hn},
le.intro H2
theorem add_lt_add_left {a b : } (H : a < b) (c : ) : c + a < c + b :=
let H' := le_of_lt H in
(iff.mpr (lt_iff_le_and_ne _ _)) (and.intro (add_le_add_left H' _)
(take Heq, let Heq' := add_left_cancel Heq in
!lt.irrefl (Heq' ▸ H)))
theorem mul_nonneg {a b : } (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b :=
obtain (n : ) (Hn : 0 + n = a), from le.elim Ha,
obtain (m : ) (Hm : 0 + m = b), from le.elim Hb,
le.intro
(eq.symm
(calc
a * b = (0 + n) * b : Hn
... = n * b : nat.zero_add
... = n * (0 + m) : {Hm⁻¹}
... = n * m : nat.zero_add
... = 0 + n * m : zero_add))
theorem mul_pos {a b : } (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b :=
obtain (n : ) (Hn : 0 + nat.succ n = a), from lt.elim Ha,
obtain (m : ) (Hm : 0 + nat.succ m = b), from lt.elim Hb,
lt.intro
(eq.symm
(calc
a * b = (0 + nat.succ n) * b : Hn
... = nat.succ n * b : nat.zero_add
... = nat.succ n * (0 + nat.succ m) : {Hm⁻¹}
... = nat.succ n * nat.succ m : nat.zero_add
... = of_nat (nat.succ n * nat.succ m) : of_nat_mul
... = of_nat (nat.succ n * m + nat.succ n) : nat.mul_succ
... = of_nat (nat.succ (nat.succ n * m + n)) : nat.add_succ
... = 0 + nat.succ (nat.succ n * m + n) : zero_add))
theorem zero_lt_one : (0 : ) < 1 := trivial
theorem not_le_of_gt {a b : } (H : a < b) : ¬ b ≤ a :=
assume Hba,
let Heq := le.antisymm (le_of_lt H) Hba in
!lt.irrefl (Heq ▸ H)
theorem lt_of_lt_of_le {a b c : } (Hab : a < b) (Hbc : b ≤ c) : a < c :=
let Hab' := le_of_lt Hab in
let Hac := le.trans Hab' Hbc in
(iff.mpr !lt_iff_le_and_ne) (and.intro Hac
(assume Heq, not_le_of_gt (Heq ▸ Hab) Hbc))
theorem lt_of_le_of_lt {a b c : } (Hab : a ≤ b) (Hbc : b < c) : a < c :=
let Hbc' := le_of_lt Hbc in
let Hac := le.trans Hab Hbc' in
(iff.mpr !lt_iff_le_and_ne) (and.intro Hac
(assume Heq, not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab))
section migrate_algebra
open [classes] algebra
protected definition linear_ordered_comm_ring [reducible] :
algebra.linear_ordered_comm_ring int :=
⦃algebra.linear_ordered_comm_ring, int.integral_domain,
le := le,
le_refl := le.refl,
le_trans := @le.trans,
le_antisymm := @le.antisymm,
lt := lt,
le_of_lt := @le_of_lt,
lt_irrefl := lt.irrefl,
lt_of_lt_of_le := @lt_of_lt_of_le,
lt_of_le_of_lt := @lt_of_le_of_lt,
add_le_add_left := @add_le_add_left,
mul_nonneg := @mul_nonneg,
mul_pos := @mul_pos,
le_iff_lt_or_eq := le_iff_lt_or_eq,
le_total := le.total,
zero_ne_one := zero_ne_one,
zero_lt_one := zero_lt_one,
add_lt_add_left := @add_lt_add_left⦄
protected definition decidable_linear_ordered_comm_ring [reducible] :
algebra.decidable_linear_ordered_comm_ring int :=
⦃algebra.decidable_linear_ordered_comm_ring,
int.linear_ordered_comm_ring,
decidable_lt := decidable_lt⦄
local attribute int.integral_domain [instance]
local attribute int.linear_ordered_comm_ring [instance]
local attribute int.decidable_linear_ordered_comm_ring [instance]
definition ge [reducible] (a b : ) := algebra.has_le.ge a b
definition gt [reducible] (a b : ) := algebra.has_lt.gt a b
infix >= := int.ge
infix ≥ := int.ge
infix > := int.gt
definition decidable_ge [instance] (a b : ) : decidable (a ≥ b) :=
show decidable (b ≤ a), from _
definition decidable_gt [instance] (a b : ) : decidable (a > b) :=
show decidable (b < a), from _
definition min : := algebra.min
definition max : := algebra.max
definition abs : := algebra.abs
definition sign : := algebra.sign
migrate from algebra with int
replacing has_le.ge → ge, has_lt.gt → gt, dvd → dvd, sub → sub, min → min, max → max,
abs → abs, sign → sign
attribute le.trans ge.trans lt.trans gt.trans [trans]
attribute lt_of_lt_of_le lt_of_le_of_lt gt_of_gt_of_ge gt_of_ge_of_gt [trans]
end migrate_algebra
/- more facts specific to int -/
theorem of_nat_nonneg (n : ) : 0 ≤ of_nat n := trivial
theorem of_nat_pos {n : } (Hpos : #nat n > 0) : of_nat n > 0 :=
of_nat_lt_of_nat_of_lt Hpos
theorem of_nat_succ_pos (n : nat) : of_nat (nat.succ n) > 0 :=
of_nat_pos !nat.succ_pos
theorem exists_eq_of_nat {a : } (H : 0 ≤ a) : ∃n : , a = of_nat n :=
obtain (n : ) (H1 : 0 + of_nat n = a), from le.elim H,
exists.intro n (!zero_add ▸ (H1⁻¹))
theorem exists_eq_neg_of_nat {a : } (H : a ≤ 0) : ∃n : , a = -(of_nat n) :=
have H2 : -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
obtain (n : ) (Hn : -a = of_nat n), from exists_eq_of_nat H2,
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
theorem of_nat_nat_abs_of_nonneg {a : } (H : a ≥ 0) : of_nat (nat_abs a) = a :=
obtain (n : ) (Hn : a = of_nat n), from exists_eq_of_nat H,
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
theorem of_nat_nat_abs_of_nonpos {a : } (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
have H1 : (-a) ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
calc
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
... = -a : of_nat_nat_abs_of_nonneg H1
theorem of_nat_nat_abs (b : ) : nat_abs b = abs b :=
or.elim (le.total 0 b)
(assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹)
(assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹)
theorem nat_abs_abs (a : ) : nat_abs (abs a) = nat_abs a :=
abs.by_cases rfl !nat_abs_neg
theorem lt_of_add_one_le {a b : } (H : a + 1 ≤ b) : a < b :=
obtain n (H1 : a + 1 + n = b), from le.elim H,
have H2 : a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1],
lt.intro H2
theorem add_one_le_of_lt {a b : } (H : a < b) : a + 1 ≤ b :=
obtain n (H1 : a + succ n = b), from lt.elim H,
have H2 : a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1],
le.intro H2
theorem lt_add_one_of_le {a b : } (H : a ≤ b) : a < b + 1 :=
lt_add_of_le_of_pos H trivial
theorem le_of_lt_add_one {a b : } (H : a < b + 1) : a ≤ b :=
have H1 : a + 1 ≤ b + 1, from add_one_le_of_lt H,
le_of_add_le_add_right H1
theorem sub_one_le_of_lt {a b : } (H : a ≤ b) : a - 1 < b :=
lt_of_add_one_le (!sub_add_cancel⁻¹ ▸ H)
theorem lt_of_sub_one_le {a b : } (H : a - 1 < b) : a ≤ b :=
!sub_add_cancel ▸ add_one_le_of_lt H
theorem le_sub_one_of_lt {a b : } (H : a < b) : a ≤ b - 1 :=
le_of_lt_add_one (!sub_add_cancel⁻¹ ▸ H)
theorem lt_of_le_sub_one {a b : } (H : a ≤ b - 1) : a < b :=
!sub_add_cancel ▸ (lt_add_one_of_le H)
theorem sign_of_succ (n : nat) : sign (nat.succ n) = 1 :=
sign_of_pos (of_nat_pos !nat.succ_pos)
theorem exists_eq_neg_succ_of_nat {a : } : a < 0 → ∃m : , a = -[1+m] :=
int.cases_on a
(take m H, absurd (of_nat_nonneg m : 0 ≤ m) (not_le_of_gt H))
(take m H, exists.intro m rfl)
theorem eq_one_of_mul_eq_one_right {a b : } (H : a ≥ 0) (H' : a * b = 1) : a = 1 :=
have H2 : a * b > 0, by rewrite H'; apply trivial,
have H3 : b > 0, from pos_of_mul_pos_left H2 H,
have H4 : a > 0, from pos_of_mul_pos_right H2 (le_of_lt H3),
or.elim (le_or_gt a 1)
(assume H5 : a ≤ 1,
show a = 1, from le.antisymm H5 (add_one_le_of_lt H4))
(assume H5 : a > 1,
assert H6 : a * b ≥ 2 * 1,
from mul_le_mul (add_one_le_of_lt H5) (add_one_le_of_lt H3) trivial H,
have H7 : false, by rewrite [H' at H6]; apply H6,
false.elim H7)
theorem eq_one_of_mul_eq_one_left {a b : } (H : b ≥ 0) (H' : a * b = 1) : b = 1 :=
eq_one_of_mul_eq_one_right H (!mul.comm ▸ H')
theorem eq_one_of_mul_eq_self_left {a b : } (Hpos : a ≠ 0) (H : b * a = a) : b = 1 :=
eq_of_mul_eq_mul_right Hpos (H ⬝ (one_mul a)⁻¹)
theorem eq_one_of_mul_eq_self_right {a b : } (Hpos : b ≠ 0) (H : b * a = b) : a = 1 :=
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
theorem eq_one_of_dvd_one {a : } (H : a ≥ 0) (H' : a 1) : a = 1 :=
dvd.elim H'
(take b,
assume H1 : 1 = a * b,
eq_one_of_mul_eq_one_right H H1⁻¹)
end int