2013-11-29 05:48:30 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
|
|
|
Assumed: p
|
|
|
|
Assumed: q
|
|
|
|
Assumed: r
|
|
|
|
Proved: T1
|
|
|
|
Proved: T2
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T2 (H : p) (H::1 : q) : p ∧ q ∧ p := and_intro H (and_intro H::1 H)
|
2013-11-29 05:48:30 +00:00
|
|
|
Proved: T3
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T3 (H : p) (H::1 : p ∧ q) (H::2 : r) : q ∧ r ∧ p := and_intro (and_elimr H::1) (and_intro H::2 H)
|
2013-12-26 23:54:53 +00:00
|
|
|
Proved: T4
|
2014-01-09 16:33:52 +00:00
|
|
|
theorem T4 (H : p) (H::1 : p ∧ q) (H::2 : r) : q ∧ r ∧ p := and_intro (and_elimr H::1) (and_intro H::2 H)
|