lean2/src/library/simplifier/ceq.h

51 lines
1.7 KiB
C
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "util/lua.h"
#include "kernel/environment.h"
#include "library/expr_pair.h"
namespace lean {
/**
\brief Given a proposition \c e and its proof H, return a list of conditional equations (and proofs) extracted from \c e.
The following rules are used to convert \c e into conditional equations.
[not P] ---> P = false
[P /\ Q] ---> [P], [Q]
[if P then Q else R] ---> P -> [Q], not P -> [Q]
[P -> Q] ---> P -> [Q]
[forall x : A, P] ---> forall x : A, [P]
[a b] ---> (a = b) = false
P ---> P = true (if none of the rules above apply and P is not an equality)
\remark if the left-hand-side of an equation does not contain all variables, then it is
discarded. That is, all elements in the resultant list satisfy the predicate \c is_ceq.
*/
list<expr_pair> to_ceqs(ro_environment const & env, expr const & e, expr const & H);
/**
\brief Return true iff \c e is a conditional equation.
A conditional equation ceq has the form
<code>
ceq := (forall x : A, ceq)
| lhs = rhs
| lhs == rhs
</code>
Moreover, for <tt>(forall x : A, ceq)</tt>, the variable x must occur in the \c ceq left-hand-size
when \c A is not a proposition.
*/
bool is_ceq(ro_environment const & env, expr e);
/**
\brief Return true iff the lhs is identical to the rhs modulo a
permutation of the conditional equation arguments.
*/
bool is_permutation_ceq(expr e);
void open_ceq(lua_State * L);
}