2014-08-24 19:58:48 -07:00
|
|
|
import logic
|
2014-07-27 08:17:46 -07:00
|
|
|
|
|
|
|
namespace S1
|
2014-10-02 16:20:52 -07:00
|
|
|
axiom I : Type
|
2014-07-27 08:17:46 -07:00
|
|
|
definition F (X : Type) : Type := (X → Prop) → Prop
|
2014-10-02 16:20:52 -07:00
|
|
|
axiom unfold.{l} : I.{l} → F I.{l}
|
2015-03-25 18:22:20 -07:00
|
|
|
axiom foldd.{l} : F I.{l} → I.{l}
|
|
|
|
axiom iso1 : ∀x, foldd (unfold x) = x
|
2014-08-07 16:59:08 -07:00
|
|
|
end S1
|
2014-07-27 08:17:46 -07:00
|
|
|
|
|
|
|
namespace S2
|
|
|
|
universe u
|
2014-10-02 16:20:52 -07:00
|
|
|
axiom I : Type.{u}
|
2014-07-27 08:17:46 -07:00
|
|
|
definition F (X : Type) : Type := (X → Prop) → Prop
|
2014-10-02 16:20:52 -07:00
|
|
|
axiom unfold : I → F I
|
2015-03-25 18:22:20 -07:00
|
|
|
axiom foldd : F I → I
|
|
|
|
axiom iso1 : ∀x, foldd (unfold x) = x
|
2014-08-07 16:59:08 -07:00
|
|
|
end S2
|
2014-07-27 08:17:46 -07:00
|
|
|
|
|
|
|
|
|
|
|
namespace S3
|
2015-04-21 19:33:21 -07:00
|
|
|
section
|
2014-07-27 08:17:46 -07:00
|
|
|
hypothesis I : Type
|
|
|
|
definition F (X : Type) : Type := (X → Prop) → Prop
|
|
|
|
hypothesis unfold : I → F I
|
2015-03-25 18:22:20 -07:00
|
|
|
hypothesis foldd : F I → I
|
|
|
|
hypothesis iso1 : ∀x, foldd (unfold x) = x
|
2014-07-27 08:17:46 -07:00
|
|
|
end
|
2014-08-07 16:59:08 -07:00
|
|
|
end S3
|