59 lines
2.2 KiB
Text
59 lines
2.2 KiB
Text
|
/-
|
||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
|
||
|
Module: data.nat.sqrt
|
||
|
Authors: Leonardo de Moura
|
||
|
|
||
|
Very simple (sqrt n) function that returns s s.t.
|
||
|
s*s ≤ n ≤ s*s + s + s
|
||
|
-/
|
||
|
import data.nat.order
|
||
|
|
||
|
namespace nat
|
||
|
open decidable
|
||
|
|
||
|
-- This is the simplest possible function that just performs a linear search
|
||
|
definition sqrt_aux : nat → nat → nat
|
||
|
| 0 n := 0
|
||
|
| (succ s) n := if (succ s)*(succ s) ≤ n then succ s else sqrt_aux s n
|
||
|
|
||
|
theorem sqrt_aux_suc_of_pos {s n} : (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = (succ s) :=
|
||
|
assume h, if_pos h
|
||
|
|
||
|
theorem sqrt_aux_suc_of_neg {s n} : ¬ (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = sqrt_aux s n :=
|
||
|
assume h, if_neg h
|
||
|
|
||
|
definition sqrt (n : nat) : nat :=
|
||
|
sqrt_aux n n
|
||
|
|
||
|
theorem sqrt_aux_lower : ∀ {s n : nat}, s ≤ n → sqrt_aux s n * sqrt_aux s n ≤ n
|
||
|
| 0 n h := h
|
||
|
| (succ s) n h := by_cases
|
||
|
(λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_suc_of_pos h₁]; exact h₁)
|
||
|
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
|
||
|
assert aux : s ≤ n, from lt.step (lt_of_succ_le h),
|
||
|
by rewrite [sqrt_aux_suc_of_neg h₂]; exact (sqrt_aux_lower aux))
|
||
|
|
||
|
theorem sqrt_lower (n : nat) : sqrt n * sqrt n ≤ n :=
|
||
|
sqrt_aux_lower (le.refl n)
|
||
|
|
||
|
theorem succ_squared (n : nat) : succ n * succ n = n*n + n + n + 1 :=
|
||
|
calc succ n * succ n = (n+1)*(n+1) : by rewrite [add_one]
|
||
|
... = n*n + n + n + 1 : by rewrite [mul.right_distrib, mul.left_distrib, one_mul, mul_one]
|
||
|
|
||
|
theorem sqrt_aux_upper : ∀ {s n : nat}, n ≤ s*s + s + s → n ≤ sqrt_aux s n * sqrt_aux s n + sqrt_aux s n + sqrt_aux s n
|
||
|
| 0 n h := h
|
||
|
| (succ s) n h := by_cases
|
||
|
(λ h₁ : (succ s)*(succ s) ≤ n,
|
||
|
by rewrite [sqrt_aux_suc_of_pos h₁]; exact h)
|
||
|
(λ h₂ : ¬ (succ s)*(succ s) ≤ n,
|
||
|
assert h₃ : n < (succ s) * (succ s), from lt_of_not_le h₂,
|
||
|
assert h₄ : n ≤ s * s + s + s, by rewrite [succ_squared at h₃]; exact h₃,
|
||
|
by rewrite [sqrt_aux_suc_of_neg h₂]; exact (sqrt_aux_upper h₄))
|
||
|
|
||
|
theorem sqrt_upper (n : nat) : n ≤ sqrt n * sqrt n + sqrt n + sqrt n :=
|
||
|
have aux : n ≤ n*n + n + n, from le_add_of_le_right (le_add_of_le_left (le.refl n)),
|
||
|
sqrt_aux_upper aux
|
||
|
end nat
|