10 lines
326 B
Text
10 lines
326 B
Text
|
open nat
|
||
|
|
||
|
theorem lt_trans : ∀ {a b c : nat}, a < b → b < c → a < c,
|
||
|
lt_trans h (lt.base _) := lt.step h,
|
||
|
lt_trans h₁ (lt.step h₂) := lt.step (lt_trans h₁ h₂)
|
||
|
|
||
|
theorem lt_succ : ∀ {a b : nat}, a < b → succ a < succ b,
|
||
|
lt_succ (lt.base a) := lt.base (succ a),
|
||
|
lt_succ (lt.step h) := lt.step (lt_succ h)
|