lean2/hott/types/univ.hlean

130 lines
4.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about the universe
-/
-- see also init.ua
import .bool .trunc .lift .pullback
open is_trunc bool lift unit eq pi equiv equiv.ops sum sigma fiber prod pullback is_equiv sigma.ops
pointed
namespace univ
universe variables u v
variables {A B : Type.{u}} {a : A} {b : B}
/- Pathovers -/
definition eq_of_pathover_ua {f : A ≃ B} (p : a =[ua f] b) : f a = b :=
!cast_ua⁻¹ ⬝ tr_eq_of_pathover p
definition pathover_ua {f : A ≃ B} (p : f a = b) : a =[ua f] b :=
pathover_of_tr_eq (!cast_ua ⬝ p)
definition pathover_ua_equiv (f : A ≃ B) : (a =[ua f] b) ≃ (f a = b) :=
equiv.MK eq_of_pathover_ua
pathover_ua
abstract begin
intro p, unfold [pathover_ua,eq_of_pathover_ua],
rewrite [to_right_inv !pathover_equiv_tr_eq, inv_con_cancel_left]
end end
abstract begin
intro p, unfold [pathover_ua,eq_of_pathover_ua],
rewrite [con_inv_cancel_left, to_left_inv !pathover_equiv_tr_eq]
end end
/- Properties which can be disproven for the universe -/
definition not_is_set_type0 : ¬is_set Type₀ :=
assume H : is_set Type₀,
absurd !is_set.elim eq_bnot_ne_idp
definition not_is_set_type : ¬is_set Type.{u} :=
assume H : is_set Type,
absurd (is_trunc_is_embedding_closed lift star) not_is_set_type0
definition not_double_negation_elimination0 : ¬Π(A : Type₀), ¬¬A → A :=
begin
intro f,
have u : ¬¬bool, by exact (λg, g tt),
let H1 := apdo f eq_bnot,
note H2 := apo10 H1 u,
have p : eq_bnot ▸ u = u, from !is_prop.elim,
rewrite p at H2,
note H3 := eq_of_pathover_ua H2, esimp at H3, --TODO: use apply ... at after #700
exact absurd H3 (bnot_ne (f bool u)),
end
definition not_double_negation_elimination : ¬Π(A : Type), ¬¬A → A :=
begin
intro f,
apply not_double_negation_elimination0,
intro A nna, refine down (f _ _),
intro na,
have ¬A, begin intro a, exact absurd (up a) na end,
exact absurd this nna
end
definition not_excluded_middle : ¬Π(A : Type), A + ¬A :=
begin
intro f,
apply not_double_negation_elimination,
intro A nna,
induction (f A) with a na,
exact a,
exact absurd na nna
end
definition characteristic_map [unfold 2] {B : Type.{u}} (p : Σ(A : Type.{max u v}), A → B)
(b : B) : Type.{max u v} :=
by induction p with A f; exact fiber f b
definition characteristic_map_inv [unfold 2] {B : Type.{u}} (P : B → Type.{max u v}) :
Σ(A : Type.{max u v}), A → B :=
⟨(Σb, P b), pr1⟩
definition sigma_arrow_equiv_arrow_univ [constructor] (B : Type.{u}) :
(Σ(A : Type.{max u v}), A → B) ≃ (B → Type.{max u v}) :=
begin
fapply equiv.MK,
{ exact characteristic_map},
{ exact characteristic_map_inv},
{ intro P, apply eq_of_homotopy, intro b, esimp, apply ua, apply fiber_pr1},
{ intro p, induction p with A f, fapply sigma_eq: esimp,
{ apply ua, apply sigma_fiber_equiv },
{ apply arrow_pathover_constant_right, intro v,
rewrite [-cast_def _ v, cast_ua_fn],
esimp [sigma_fiber_equiv,equiv.trans,equiv.symm,sigma_comm_equiv,comm_equiv_unc],
induction v with b w, induction w with a p, esimp, exact p⁻¹}}
end
definition is_object_classifier (f : A → B)
: pullback_square (pointed_fiber f) (fiber f) f pType.carrier :=
pullback_square.mk
(λa, idp)
(is_equiv_of_equiv_of_homotopy
(calc
A ≃ Σb, fiber f b : sigma_fiber_equiv
... ≃ Σb (v : ΣX, X = fiber f b), v.1 : sigma_equiv_sigma_right
(λb, !sigma_equiv_of_is_contr_left)
... ≃ Σb X (p : X = fiber f b), X : sigma_equiv_sigma_right
(λb, !sigma_assoc_equiv)
... ≃ Σb X (x : X), X = fiber f b : sigma_equiv_sigma_right
(λb, sigma_equiv_sigma_right
(λX, !comm_equiv_nondep))
... ≃ Σb (v : ΣX, X), v.1 = fiber f b : sigma_equiv_sigma_right
(λb, !sigma_assoc_equiv⁻¹)
... ≃ Σb (Y : Type*), Y = fiber f b : sigma_equiv_sigma_right
(λb, sigma_equiv_sigma (pType.sigma_char)⁻¹
(λv, sigma.rec_on v (λx y, equiv.refl)))
... ≃ Σ(Y : Type*) b, Y = fiber f b : sigma_comm_equiv
... ≃ pullback pType.carrier (fiber f) : !pullback.sigma_char⁻¹ᵉ
)
proof λb, idp qed)
end univ