2013-09-02 19:29:21 +00:00
|
|
|
|
Set: pp::colors
|
2013-09-03 17:44:51 +00:00
|
|
|
|
Set: pp::unicode
|
2013-09-01 02:15:48 +00:00
|
|
|
|
Assumed: N
|
|
|
|
|
Assumed: h
|
|
|
|
|
Proved: CongrH
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: lean::pp::implicit
|
2013-09-01 17:34:57 +00:00
|
|
|
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
2013-09-01 02:15:48 +00:00
|
|
|
|
Congr::explicit
|
|
|
|
|
N
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(λ x : N, N)
|
2013-09-01 02:15:48 +00:00
|
|
|
|
(h a1)
|
|
|
|
|
(h b1)
|
|
|
|
|
a2
|
|
|
|
|
b2
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1)
|
2013-09-01 02:15:48 +00:00
|
|
|
|
H2
|
2013-09-07 00:58:45 +00:00
|
|
|
|
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := CongrH H1 H2
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: lean::pp::implicit
|
2013-09-01 17:34:57 +00:00
|
|
|
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := Congr (Congr (Refl h) H1) H2
|
|
|
|
|
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := CongrH H1 H2
|
2013-09-01 02:15:48 +00:00
|
|
|
|
Proved: Example1
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: lean::pp::implicit
|
2013-09-01 17:34:57 +00:00
|
|
|
|
Theorem Example1 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
2013-09-01 02:15:48 +00:00
|
|
|
|
DisjCases::explicit
|
|
|
|
|
(a = b ∧ b = c)
|
|
|
|
|
(a = d ∧ d = c)
|
|
|
|
|
((h a b) = (h c b))
|
|
|
|
|
H
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(λ H1 : a = b ∧ b = c,
|
2013-09-01 02:15:48 +00:00
|
|
|
|
CongrH::explicit
|
|
|
|
|
a
|
|
|
|
|
b
|
|
|
|
|
c
|
|
|
|
|
b
|
|
|
|
|
(Trans::explicit
|
|
|
|
|
N
|
|
|
|
|
a
|
|
|
|
|
b
|
|
|
|
|
c
|
|
|
|
|
(Conjunct1::explicit (a = b) (b = c) H1)
|
|
|
|
|
(Conjunct2::explicit (a = b) (b = c) H1))
|
|
|
|
|
(Refl::explicit N b))
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(λ H1 : a = d ∧ d = c,
|
2013-09-01 02:15:48 +00:00
|
|
|
|
CongrH::explicit
|
|
|
|
|
a
|
|
|
|
|
b
|
|
|
|
|
c
|
|
|
|
|
b
|
|
|
|
|
(Trans::explicit
|
|
|
|
|
N
|
|
|
|
|
a
|
|
|
|
|
d
|
|
|
|
|
c
|
|
|
|
|
(Conjunct1::explicit (a = d) (d = c) H1)
|
|
|
|
|
(Conjunct2::explicit (a = d) (d = c) H1))
|
|
|
|
|
(Refl::explicit N b))
|
|
|
|
|
Proved: Example2
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: lean::pp::implicit
|
2013-09-01 17:34:57 +00:00
|
|
|
|
Theorem Example2 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
2013-09-01 02:15:48 +00:00
|
|
|
|
DisjCases::explicit
|
|
|
|
|
(a = b ∧ b = c)
|
|
|
|
|
(a = d ∧ d = c)
|
|
|
|
|
((h a b) = (h c b))
|
|
|
|
|
H
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(λ H1 : a = b ∧ b = c,
|
2013-09-01 02:15:48 +00:00
|
|
|
|
CongrH::explicit
|
|
|
|
|
a
|
|
|
|
|
b
|
|
|
|
|
c
|
|
|
|
|
b
|
|
|
|
|
(Trans::explicit
|
|
|
|
|
N
|
|
|
|
|
a
|
|
|
|
|
b
|
|
|
|
|
c
|
|
|
|
|
(Conjunct1::explicit (a = b) (b = c) H1)
|
|
|
|
|
(Conjunct2::explicit (a = b) (b = c) H1))
|
|
|
|
|
(Refl::explicit N b))
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(λ H1 : a = d ∧ d = c,
|
2013-09-01 02:15:48 +00:00
|
|
|
|
CongrH::explicit
|
|
|
|
|
a
|
|
|
|
|
b
|
|
|
|
|
c
|
|
|
|
|
b
|
|
|
|
|
(Trans::explicit
|
|
|
|
|
N
|
|
|
|
|
a
|
|
|
|
|
d
|
|
|
|
|
c
|
|
|
|
|
(Conjunct1::explicit (a = d) (d = c) H1)
|
|
|
|
|
(Conjunct2::explicit (a = d) (d = c) H1))
|
|
|
|
|
(Refl::explicit N b))
|
|
|
|
|
Proved: Example3
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: lean::pp::implicit
|
2013-09-01 17:34:57 +00:00
|
|
|
|
Theorem Example3 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
2013-09-01 02:15:48 +00:00
|
|
|
|
DisjCases
|
|
|
|
|
H
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(λ H1 : a = b ∧ b = e ∧ b = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b))
|
|
|
|
|
(λ H1 : a = d ∧ d = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
2013-09-01 02:15:48 +00:00
|
|
|
|
Proved: Example4
|
2013-09-02 19:29:21 +00:00
|
|
|
|
Set: lean::pp::implicit
|
2013-09-01 17:34:57 +00:00
|
|
|
|
Theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a c) = (h c a) :=
|
2013-09-01 02:15:48 +00:00
|
|
|
|
DisjCases
|
|
|
|
|
H
|
2013-09-01 17:34:57 +00:00
|
|
|
|
(λ H1 : a = b ∧ b = e ∧ b = c,
|
|
|
|
|
let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1)) in CongrH AeqC (Symm AeqC))
|
|
|
|
|
(λ H1 : a = d ∧ d = c, let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1) in CongrH AeqC (Symm AeqC))
|