lean2/src/library/module.cpp

355 lines
13 KiB
C++
Raw Normal View History

/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <unordered_map>
#include <vector>
#include <utility>
#include <string>
#include <sstream>
#include <fstream>
#include <algorithm>
#include "util/hash.h"
#include "util/thread.h"
#include "util/lean_path.h"
#include "util/sstream.h"
#include "util/buffer.h"
#include "util/interrupt.h"
#include "kernel/type_checker.h"
#include "library/module.h"
#include "library/kernel_serializer.h"
#include "version.h"
namespace lean {
typedef std::pair<std::string, std::function<void(serializer &)>> writer;
struct module_ext : public environment_extension {
list<std::string> m_direct_imports;
list<writer> m_writers;
};
struct module_ext_reg {
unsigned m_ext_id;
module_ext_reg() { m_ext_id = environment::register_extension(std::make_shared<module_ext>()); }
};
static module_ext_reg g_ext;
static module_ext const & get_extension(environment const & env) {
return static_cast<module_ext const &>(env.get_extension(g_ext.m_ext_id));
}
static environment update(environment const & env, module_ext const & ext) {
return env.update(g_ext.m_ext_id, std::make_shared<module_ext>(ext));
}
static char const * g_olean_end_file = "EndFile";
static char const * g_olean_header = "oleanfile";
void export_module(std::ostream & out, environment const & env) {
module_ext const & ext = get_extension(env);
buffer<std::string> imports;
buffer<writer const *> writers;
to_buffer(ext.m_direct_imports, imports);
std::reverse(imports.begin(), imports.end());
for (writer const & w : ext.m_writers)
writers.push_back(&w);
std::reverse(writers.begin(), writers.end());
std::ostringstream out1(std::ios_base::binary);
serializer s1(out1);
// store objects
for (auto p : writers) {
s1 << p->first;
p->second(s1);
}
s1 << g_olean_end_file;
serializer s2(out);
std::string r = out1.str();
unsigned h = hash(r.size(), [&](unsigned i) { return r[i]; });
s2 << g_olean_header << LEAN_VERSION_MAJOR << LEAN_VERSION_MINOR;
s2 << h;
// store imported files
s2 << imports.size();
for (auto m : imports)
s2 << m;
// store object code
s2.write_unsigned(r.size());
for (unsigned i = 0; i < r.size(); i++)
s2.write_char(r[i]);
}
typedef std::unordered_map<std::string, module_object_reader> object_readers;
static std::unique_ptr<object_readers> g_object_readers;
static object_readers & get_object_readers() {
if (!g_object_readers)
g_object_readers.reset(new object_readers());
return *(g_object_readers.get());
}
void register_module_object_reader(std::string const & k, module_object_reader r) {
object_readers & readers = get_object_readers();
lean_assert(readers.find(k) == readers.end());
readers[k] = r;
}
environment add(environment const & env, std::string const & k, std::function<void(serializer &)> const & wr) {
module_ext ext = get_extension(env);
ext.m_writers = list<writer>(writer(k, wr), ext.m_writers);
return update(env, ext);
}
static std::string g_decl("decl");
static void declaration_reader(deserializer & d, module_idx midx, shared_environment & senv,
std::function<void(asynch_update_fn const &)> & add_asynch_update,
std::function<void(delayed_update_fn const &)> &) {
declaration decl = read_declaration(d, midx);
environment env = senv.env();
if (env.trust_lvl() > LEAN_BELIEVER_TRUST_LEVEL) {
senv.add(decl);
} else if (decl.is_theorem()) {
// First, we add the theorem as an axiom, and create an asychronous task for
// checking the actual theorem, and replace the axiom with the actual theorem.
certified_declaration tmp_c = check(env, mk_axiom(decl.get_name(), decl.get_params(), decl.get_type()));
senv.add(tmp_c);
add_asynch_update([=](shared_environment & senv) {
certified_declaration c = check(env, decl);
senv.replace(c);
});
} else {
certified_declaration c = check(env, decl);
senv.add(c);
}
}
static register_module_object_reader_fn g_reg_decl_reader(g_decl, declaration_reader);
environment add(environment const & env, certified_declaration const & d) {
environment new_env = env.add(d);
declaration _d = d.get_declaration();
return add(new_env, g_decl, [=](serializer & s) { s << _d; });
}
environment add(environment const & env, declaration const & d) {
environment new_env = env.add(d);
return add(new_env, g_decl, [=](serializer & s) { s << d; });
}
struct import_modules_fn {
typedef std::tuple<module_idx, unsigned, delayed_update_fn> delayed_update;
shared_environment m_senv;
unsigned m_num_threads;
mutex m_asynch_mutex;
condition_variable m_asynch_cv;
std::vector<asynch_update_fn> m_asynch_tasks;
mutex m_delayed_mutex;
std::vector<delayed_update> m_delayed_tasks;
atomic<unsigned> m_import_counter; // number of modules to be processed
atomic<bool> m_all_modules_imported;
struct module_info {
std::string m_name;
std::string m_fname;
atomic<unsigned> m_counter; // number of dependencies to be processed
unsigned m_module_idx;
std::vector<std::shared_ptr<module_info>> m_dependents;
std::vector<char> m_obj_code;
module_info():m_counter(0), m_module_idx(0) {}
};
typedef std::shared_ptr<module_info> module_info_ptr;
std::unordered_map<std::string, module_info_ptr> m_module_info;
import_modules_fn(environment const & env, unsigned num_threads):
m_senv(env), m_num_threads(num_threads),
m_import_counter(0), m_all_modules_imported(false) {
if (m_num_threads == 0)
m_num_threads = 1;
}
module_info_ptr load_module_file(std::string const & mname) {
auto it = m_module_info.find(mname);
if (it != m_module_info.end())
return it->second;
std::string fname = find_file(mname, {".olean"});
std::ifstream in(fname, std::ifstream::binary);
if (!in.good())
throw exception(sstream() << "failed to open file '" << fname << "'");
deserializer d1(in);
std::string header;
d1 >> header;
if (header != g_olean_header)
throw exception(sstream() << "file '" << fname << "' does not seem to be a valid object Lean file");
unsigned major, minor, claimed_hash;
d1 >> major >> minor >> claimed_hash;
// Enforce version?
unsigned num_imports = d1.read_unsigned();
buffer<std::string> imports;
for (unsigned i = 0; i < num_imports; i++)
imports.push_back(d1.read_string());
unsigned code_size = d1.read_unsigned();
std::vector<char> code(code_size);
for (unsigned i = 0; i < code_size; i++)
code[i] = d1.read_char();
unsigned computed_hash = hash(code_size, [&](unsigned i) { return code[i]; });
if (claimed_hash != computed_hash)
throw exception(sstream() << "file '" << fname << "' has been corrupted");
module_info_ptr r = std::make_shared<module_info>();
r->m_name = mname;
r->m_fname = fname;
r->m_counter = imports.size();
r->m_module_idx = m_import_counter;
m_import_counter++;
std::swap(r->m_obj_code, code);
for (auto i : imports) {
r->m_dependents.push_back(load_module_file(i));
}
if (imports.empty())
add_import_module_task(r);
return r;
}
void add_asynch_task(asynch_update_fn const & f) {
{
lock_guard<mutex> l(m_asynch_mutex);
m_asynch_tasks.push_back(f);
}
m_asynch_cv.notify_one();
}
void add_import_module_task(module_info_ptr const & r) {
add_asynch_task([=](shared_environment &) { import_module(r); });
}
void import_module(module_info_ptr const & r) {
std::string s(r->m_obj_code.data(), r->m_obj_code.size());
std::istringstream in(s, std::ios_base::binary);
deserializer d(in);
unsigned obj_counter = 0;
std::function<void(asynch_update_fn const &)> add_asynch_update([&](asynch_update_fn const & f) {
add_asynch_task(f);
});
std::function<void(delayed_update_fn const &)> add_delayed_update([&](delayed_update_fn const & f) {
lock_guard<mutex> lk(m_delayed_mutex);
m_delayed_tasks.push_back(std::make_tuple(r->m_module_idx, obj_counter, f));
});
while (true) {
check_interrupted();
std::string k;
d >> k;
if (k == g_olean_end_file) {
break;
} else {
object_readers & readers = get_object_readers();
auto it = readers.find(k);
if (it == readers.end())
throw exception(sstream() << "file '" << r->m_fname << "' has been corrupted");
it->second(d, r->m_module_idx, m_senv, add_asynch_update, add_delayed_update);
obj_counter++;
}
}
if (atomic_fetch_sub_explicit(&m_import_counter, 1u, memory_order_relaxed) == 1u)
m_all_modules_imported = true;
// Module was successfully imported, we should notify descendents.
for (module_info_ptr const & d : r->m_dependents) {
if (atomic_fetch_sub_explicit(&(d->m_counter), 1u, memory_order_relaxed) == 1u) {
// all d's dependencies have been processed
add_import_module_task(d);
}
}
}
optional<asynch_update_fn> next_task() {
while (true) {
check_interrupted();
unique_lock<mutex> lk(m_asynch_mutex);
if (!m_asynch_tasks.empty()) {
asynch_update_fn r = m_asynch_tasks.back();
m_asynch_tasks.pop_back();
return optional<asynch_update_fn>(r);
} else if (m_all_modules_imported) {
return optional<asynch_update_fn>();
} else {
m_asynch_cv.wait(lk);
}
}
}
void process_asynch_tasks() {
std::vector<std::unique_ptr<interruptible_thread>> extra_threads;
std::vector<std::unique_ptr<exception>> thread_exceptions(m_num_threads - 1);
for (unsigned i = 0; i < m_num_threads - 1; i++) {
extra_threads.push_back(std::unique_ptr<interruptible_thread>(new interruptible_thread([=, &thread_exceptions]() {
try {
while (auto t = next_task()) {
(*t)(m_senv);
}
} catch (exception ex) {
thread_exceptions[i].reset(ex.clone());
} catch (...) {
thread_exceptions[i].reset(new exception("module import thread failed for unknown reasons"));
}
})));
}
try {
while (auto t = next_task()) {
(*t)(m_senv);
}
for (auto & th : extra_threads)
th->join();
} catch (...) {
for (auto & th : extra_threads)
th->request_interrupt();
for (auto & th : extra_threads)
th->join();
throw;
}
for (auto const & ex : thread_exceptions) {
if (ex.get())
ex->rethrow();
}
}
environment process_delayed_tasks() {
environment env = m_senv.env();
// Sort delayed tasks using lexicographical order on (module-idx, obj-idx).
// obj-idx is the object's position in the module.
std::sort(m_delayed_tasks.begin(), m_delayed_tasks.end(),
[](delayed_update const & u1, delayed_update const & u2) {
if (std::get<0>(u1) != std::get<0>(u2))
return std::get<0>(u1) < std::get<0>(u2);
else
return std::get<1>(u1) < std::get<1>(u2);
});
for (auto const & d : m_delayed_tasks) {
env = std::get<2>(d)(env);
}
return env;
}
environment operator()(unsigned num_modules, std::string const * modules) {
for (unsigned i = 0; i < num_modules; i++)
load_module_file(modules[i]);
process_asynch_tasks();
return process_delayed_tasks();
}
};
environment import_modules(environment const & env, unsigned num_modules, std::string const * modules, unsigned num_threads) {
return import_modules_fn(env, num_threads)(num_modules, modules);
}
environment import_module(environment const & env, std::string const & module, unsigned num_threads) {
return import_modules(env, 1, &module, num_threads);
}
}