lean2/tests/lean/hott/inj_tac.hlean

41 lines
1,010 B
Text
Raw Normal View History

2015-05-02 20:01:37 +00:00
open nat
inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n}, A → vector A n → vector A (succ n)
open vector
notation a :: b := cons a b
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
example (a b : nat) : succ a = succ b → a + 2 = b + 2 :=
begin
intro H,
injection H,
rewrite e_1
end
example (A : Type) (n : nat) (v w : vector A n) (a : A) (b : A) :
a :: v = b :: w → b = a :=
begin
2015-05-02 20:01:37 +00:00
intro H, injection H with neqn aeqb beqw,
rewrite aeqb
end
open prod
example (A : Type) (a₁ a₂ a₃ b₁ b₂ b₃ : A) : (a₁, a₂, a₃) = (b₁, b₂, b₃) → b₁ = a₁ :=
begin
intro H, injection H with a₁b₁ a₂b₂ a₃b₃,
rewrite a₁b₁
end
example (a₁ a₂ a₃ b₁ b₂ b₃ : nat) : (a₁+2, a₂+3, a₃+1) = (b₁+2, b₂+2, b₃+2) → b₁ = a₁ × a₃ = b₃+1 :=
begin
intro H, injection H with a₁b₁ sa₂b₂ a₃sb₃,
esimp at *,
rewrite [a₁b₁, a₃sb₃], split,
repeat trivial
end