lean2/tests/lean/run/fibrant_class2.lean

33 lines
1.1 KiB
Text
Raw Normal View History

inductive fibrant [class] (T : Type) : Type :=
fibrant_mk : fibrant T
axiom pi_fibrant {A : Type} {B : A → Type} [C1 : fibrant A] [C2 : Πx : A, fibrant (B x)] :
fibrant (Πx : A, B x)
attribute pi_fibrant [instance]
inductive path {A : Type} [fA : fibrant A] (a : A) : A → Type :=
idpath : path a a
axiom path_fibrant {A : Type} [fA : fibrant A] (a b : A) : fibrant (path a b)
attribute path_fibrant [instance]
notation a ≈ b := path a b
definition test {A : Type} [fA : fibrant A] {x y : A} :
Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := take z p, _
definition test2 {A : Type} [fA : fibrant A] {x y : A} :
Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := _
definition test3 {A : Type} [fA : fibrant A] {x y : A} :
Π (z : A), y ≈ z → fibrant (x ≈ z) := _
definition test4 {A : Type} [fA : fibrant A] {x y z : A} :
fibrant (x ≈ y → x ≈ z) := _
axiom imp_fibrant {A : Type} {B : Type} [C1 : fibrant A] [C2 : fibrant B] : fibrant (A → B)
attribute imp_fibrant [instance]
definition test5 {A : Type} [fA : fibrant A] {x y : A} :
Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := _