2015-01-10 18:43:24 +00:00
|
|
|
open nat bool inhabited prod
|
|
|
|
|
|
|
|
definition diag (a b c : bool) : nat :=
|
|
|
|
match (a, b, c) with
|
2015-02-26 00:20:44 +00:00
|
|
|
| (_, tt, ff) := 1
|
|
|
|
| (ff, _, tt) := 2
|
|
|
|
| (tt, ff, _) := 3
|
|
|
|
| (_, _, _) := arbitrary nat
|
2015-01-10 20:35:29 +00:00
|
|
|
end
|
2015-01-10 18:43:24 +00:00
|
|
|
|
|
|
|
theorem diag1 (a : bool) : diag a tt ff = 1 :=
|
|
|
|
bool.cases_on a rfl rfl
|
|
|
|
|
|
|
|
theorem diag2 (a : bool) : diag ff a tt = 2 :=
|
|
|
|
bool.cases_on a rfl rfl
|
|
|
|
|
|
|
|
theorem diag3 (a : bool) : diag tt ff a = 3 :=
|
|
|
|
bool.cases_on a rfl rfl
|
|
|
|
|
|
|
|
theorem diag4_1 : diag ff ff ff = arbitrary nat :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
theorem diag4_2 : diag tt tt tt = arbitrary nat :=
|
|
|
|
rfl
|