2014-08-25 02:58:48 +00:00
|
|
|
import logic
|
2014-09-03 23:00:38 +00:00
|
|
|
open tactic
|
2014-07-08 23:55:11 +00:00
|
|
|
|
2015-04-28 00:46:13 +00:00
|
|
|
notation `(` h `|` r:(foldl `|` (e r, tactic.or_else r e) h) `)` := r
|
|
|
|
|
2015-04-06 16:24:09 +00:00
|
|
|
definition my_tac := repeat (apply @and.intro | apply @eq.refl)
|
2014-07-08 23:55:11 +00:00
|
|
|
tactic_hint my_tac
|
|
|
|
|
|
|
|
theorem T1 {A : Type} {B : Type} (a : A) (b c : B) : a = a ∧ b = b ∧ c = c
|