2013-09-03 17:44:51 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
2013-09-01 02:15:48 +00:00
|
|
|
Assumed: f
|
|
|
|
Assumed: N
|
|
|
|
Assumed: n1
|
|
|
|
Assumed: n2
|
2013-09-02 19:29:21 +00:00
|
|
|
Set: lean::pp::implicit
|
2013-09-01 02:15:48 +00:00
|
|
|
f::explicit N n1 n2
|
2013-09-03 17:44:51 +00:00
|
|
|
f::explicit ((N → N) → N → N) (λ x : N → N, x) (λ y : N → N, y)
|
2013-09-01 02:15:48 +00:00
|
|
|
Assumed: EqNice
|
|
|
|
EqNice::explicit N n1 n2
|
2013-09-10 01:35:11 +00:00
|
|
|
f::explicit N n1 n2 : N
|
2013-09-09 05:54:22 +00:00
|
|
|
Congr::explicit :
|
2013-12-06 21:23:20 +00:00
|
|
|
Π (A : Type U) (B : A → (Type U)) (f g : Π x : A, B x) (a b : A), f == g → a == b → (f a) == (g b)
|
2013-09-01 02:15:48 +00:00
|
|
|
f::explicit N n1 n2
|
|
|
|
Assumed: a
|
|
|
|
Assumed: b
|
|
|
|
Assumed: c
|
|
|
|
Assumed: g
|
|
|
|
Assumed: H1
|
|
|
|
Proved: Pr
|
2013-10-29 23:20:02 +00:00
|
|
|
Axiom H1 : eq::explicit N a b ∧ eq::explicit N b c
|
|
|
|
Theorem Pr : eq::explicit N (g a) (g c) :=
|
2013-10-24 22:42:17 +00:00
|
|
|
Congr::explicit
|
|
|
|
N
|
|
|
|
(λ x : N, N)
|
|
|
|
g
|
|
|
|
g
|
|
|
|
a
|
|
|
|
c
|
|
|
|
(Refl::explicit (N → N) g)
|
2013-10-29 23:20:02 +00:00
|
|
|
(Trans::explicit
|
|
|
|
N
|
|
|
|
a
|
|
|
|
b
|
|
|
|
c
|
|
|
|
(Conjunct1::explicit (eq::explicit N a b) (eq::explicit N b c) H1)
|
|
|
|
(Conjunct2::explicit (eq::explicit N a b) (eq::explicit N b c) H1))
|