13 lines
402 B
Text
13 lines
402 B
Text
|
open nat
|
||
|
|
||
|
lemma addz [simp] : ∀ a : nat, a + 0 = a := sorry
|
||
|
lemma zadd [simp] : ∀ a : nat, 0 + a = a := sorry
|
||
|
lemma adds [simp] : ∀ a b : nat, a + succ b = succ (a + b) := sorry
|
||
|
lemma sadd [simp] : ∀ a b : nat, succ a + b = succ (a + b) := sorry
|
||
|
|
||
|
definition comm : ∀ a b : nat, a + b = b + a
|
||
|
| a 0 := by simp
|
||
|
| a (succ n) :=
|
||
|
assert a + n = n + a, from !comm,
|
||
|
by simp
|