2014-07-27 19:17:38 +00:00
|
|
|
import logic
|
|
|
|
|
|
|
|
abbreviation subsets (P : Type) := P → Prop.
|
|
|
|
|
|
|
|
section
|
|
|
|
|
|
|
|
hypothesis A : Type.
|
|
|
|
|
|
|
|
hypothesis r : A → subsets A.
|
|
|
|
|
|
|
|
hypothesis i : subsets A → A.
|
|
|
|
|
|
|
|
hypothesis retract {P : subsets A} {a : A} : r (i P) a = P a.
|
|
|
|
|
|
|
|
definition delta (a:A) : Prop := ¬ (r a a).
|
|
|
|
|
|
|
|
notation `δ` := delta.
|
|
|
|
|
|
|
|
-- Crashes unifier!
|
|
|
|
theorem false_aux : ¬ (δ (i delta))
|
|
|
|
:= assume H : δ (i delta),
|
|
|
|
have H' : r (i delta) (i delta),
|
|
|
|
from eq_rec H (symm retract),
|
|
|
|
H H'.
|
2014-08-08 00:08:59 +00:00
|
|
|
end
|