2014-01-29 23:15:55 +00:00
|
|
|
Set: pp::colors
|
|
|
|
Set: pp::unicode
|
|
|
|
Imported 'tactic'
|
|
|
|
Assumed: f
|
|
|
|
Assumed: Ax1
|
|
|
|
Proved: T1a
|
2014-02-07 01:19:07 +00:00
|
|
|
bad_simp2.lean:14:3: error: failed to create proof for the following proof state
|
2014-01-29 23:15:55 +00:00
|
|
|
Proof state:
|
|
|
|
A : (Type 1) ⊢ f A = A
|
|
|
|
Assumed: g
|
|
|
|
Assumed: Ax2
|
|
|
|
Proved: T2a
|
2014-02-07 01:19:07 +00:00
|
|
|
bad_simp2.lean:24:3: error: failed to create proof for the following proof state
|
2014-01-29 23:15:55 +00:00
|
|
|
Proof state:
|
|
|
|
A : Type → (Type 1) ⊢ g A = A Bool
|
|
|
|
Assumed: h
|
|
|
|
Assumed: Ax3
|
|
|
|
Proved: T3a
|
|
|
|
Assumed: Ax4
|
|
|
|
Proved: T4a
|
2014-02-07 01:19:07 +00:00
|
|
|
bad_simp2.lean:40:3: error: failed to create proof for the following proof state
|
2014-01-29 23:15:55 +00:00
|
|
|
Proof state:
|
|
|
|
A : Type, B : (Type 1) ⊢ h A B = B
|
|
|
|
Assumed: h2
|
|
|
|
Assumed: Ax5
|
|
|
|
Proved: T5a
|
2014-02-07 01:19:07 +00:00
|
|
|
bad_simp2.lean:51:3: error: failed to create proof for the following proof state
|
2014-01-29 23:15:55 +00:00
|
|
|
Proof state:
|
|
|
|
A : Type, B : (Type 1) ⊢ h2 A B = A
|
|
|
|
theorem T5a (A B : Type) : h2 A B = A :=
|
|
|
|
eqt_elim (trans (congr1 A (congr2 eq (Ax5 A B (eqt_elim (trans (congr1 A (congr2 eq (Ax1 A))) (eq_id A))))))
|
|
|
|
(eq_id A))
|