lean2/library/standard/diaconescu.lean

52 lines
1.9 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad
import logic hilbert funext
-- Diaconescus theorem
-- Show that Excluded middle follows from
-- Hilbert's choice operator, function extensionality and Boolean extensionality
section
hypothesis boolext ⦃a b : Bool⦄ : (a → b) → (b → a) → a = b
parameter p : Bool
definition u [private] := epsilon (λ x, x = true p)
definition v [private] := epsilon (λ x, x = false p)
lemma u_def [private] : u = true p
:= epsilon_ax (exists_intro true (or_intro_left p (refl true)))
lemma v_def [private] : v = false p
:= epsilon_ax (exists_intro false (or_intro_left p (refl false)))
lemma uv_implies_p [private] : ¬(u = v) p
:= or_elim u_def
(assume Hut : u = true, or_elim v_def
(assume Hvf : v = false,
have Hne : ¬(u = v), from subst (symm Hvf) (subst (symm Hut) true_ne_false),
or_intro_left p Hne)
(assume Hp : p, or_intro_right (¬u = v) Hp))
(assume Hp : p, or_intro_right (¬u = v) Hp)
lemma p_implies_uv [private] : p → u = v
:= assume Hp : p,
have Hpred : (λ x, x = true p) = (λ x, x = false p), from
funext (take x : Bool,
have Hl : (x = true p) → (x = false p), from
assume A, or_intro_right (x = false) Hp,
have Hr : (x = false p) → (x = true p), from
assume A, or_intro_right (x = true) Hp,
show (x = true p) = (x = false p), from
boolext Hl Hr),
show u = v, from
subst Hpred (refl (epsilon (λ x, x = true p)))
theorem em : p ¬ p
:= have H : ¬(u = v) → ¬ p, from contrapos p_implies_uv,
or_elim uv_implies_p
(assume Hne : ¬(u = v), or_intro_right p (H Hne))
(assume Hp : p, or_intro_left (¬p) Hp)
end