16 lines
371 B
Text
16 lines
371 B
Text
|
import logic
|
||
|
|
||
|
inductive nat : Type :=
|
||
|
| zero : nat
|
||
|
| succ : nat → nat
|
||
|
|
||
|
definition add (x y : nat) : nat := nat_rec x (λn r, succ r) y
|
||
|
infixl `+`:65 := add
|
||
|
|
||
|
axiom add_right_comm (n m k : nat) : n + m + k = n + k + m
|
||
|
|
||
|
print "==========================="
|
||
|
theorem bug (a b c d : nat) : a + b + c + d = a + c + b + d
|
||
|
:= subst (add_right_comm _ _ _) (refl (a + b + c + d))
|
||
|
|