lean2/hott/types/fin.hlean

623 lines
22 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Haitao Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Haitao Zhang, Leonardo de Moura, Jakob von Raumer, Floris van Doorn
Finite ordinal types.
-/
2016-09-17 23:08:41 +00:00
import types.list algebra.bundled function logic types.prod types.sum types.nat.div
open eq function list equiv is_trunc algebra sigma sum nat
structure fin (n : nat) := (val : nat) (is_lt : val < n)
definition less_than [reducible] := fin
namespace fin
attribute fin.val [coercion]
section def_equal
variable {n : nat}
2016-09-17 23:08:41 +00:00
protected definition sigma_char : fin n ≃ Σ (val : nat), val < n :=
begin
fapply equiv.MK,
intro i, cases i with i ilt, apply dpair i ilt,
intro s, cases s with i ilt, apply fin.mk i ilt,
intro s, cases s with i ilt, reflexivity,
intro i, cases i with i ilt, reflexivity
end
definition is_set_fin [instance] : is_set (fin n) :=
begin
2016-09-17 23:08:41 +00:00
assert H : Πa, is_set (a < n), exact _, -- I don't know why this is necessary
apply is_trunc_equiv_closed_rev, apply fin.sigma_char,
end
definition eq_of_veq : Π {i j : fin n}, (val i) = j → i = j :=
begin
intro i j, cases i with i ilt, cases j with j jlt, esimp,
intro p, induction p, apply ap (mk i), apply !is_prop.elim
end
2016-07-13 08:39:16 +00:00
definition fin_eq := @eq_of_veq
definition eq_of_veq_refl (i : fin n) : eq_of_veq (refl (val i)) = idp :=
!is_prop.elim
definition veq_of_eq : Π {i j : fin n}, i = j → (val i) = j :=
by intro i j P; apply ap val; exact P
definition eq_iff_veq {i j : fin n} : (val i) = j ↔ i = j :=
pair eq_of_veq veq_of_eq
definition val_inj := @eq_of_veq n
end def_equal
section decidable
open decidable
protected definition has_decidable_eq [instance] (n : nat) :
Π (i j : fin n), decidable (i = j) :=
begin
intros i j, apply decidable_of_decidable_of_iff,
apply nat.has_decidable_eq i j, apply eq_iff_veq,
end
end decidable
/-lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk :=
take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe)
lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl
definition upto [reducible] (n : nat) : list (fin n) :=
dmap (λ i, i < n) fin.mk (list.upto n)
lemma nodup_upto (n : nat) : nodup (upto n) :=
dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n)
lemma mem_upto (n : nat) : Π (i : fin n), i ∈ upto n :=
take i, fin.destruct i
(take ival Piltn,
have ival ∈ list.upto n, from mem_upto_of_lt Piltn,
mem_dmap Piltn this)
lemma upto_zero : upto 0 = [] :=
by rewrite [↑upto, list.upto_nil, dmap_nil]
lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n :=
map_dmap_of_inv_of_pos (val_mk n) (@lt_of_mem_upto n)
lemma length_upto (n : nat) : length (upto n) = n :=
calc
length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹
... = n : list.length_upto n
definition is_fintype [instance] (n : nat) : fintype (fin n) :=
fintype.mk (upto n) (nodup_upto n) (mem_upto n)
section pigeonhole
open fintype
lemma card_fin (n : nat) : card (fin n) = n := length_upto n
theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬Σ f : fin n → fin m, injective f :=
assume Pex, absurd Pmltn (not_lt_of_ge
(calc
n = card (fin n) : card_fin
... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex
... = m : card_fin))
end pigeonhole-/
protected definition zero [constructor] (n : nat) : fin (succ n) :=
mk 0 !zero_lt_succ
definition fin_has_zero [instance] (n : nat) : has_zero (fin (succ n)) :=
has_zero.mk (fin.zero n)
definition val_zero (n : nat) : val (0 : fin (succ n)) = 0 := rfl
definition mk_mod [reducible] (n i : nat) : fin (succ n) :=
mk (i % (succ n)) (mod_lt _ !zero_lt_succ)
theorem mk_mod_zero_eq (n : nat) : mk_mod n 0 = 0 :=
apd011 fin.mk rfl !is_prop.elimo
variable {n : nat}
theorem val_lt : Π i : fin n, val i < n
| (mk v h) := h
lemma max_lt (i j : fin n) : max i j < n :=
max_lt (is_lt i) (is_lt j)
definition lift [constructor] : fin n → Π m : nat, fin (n + m)
| (mk v h) m := mk v (lt_add_of_lt_right h m)
definition lift_succ [constructor] (i : fin n) : fin (nat.succ n) :=
have r : fin (n+1), from lift i 1,
r
definition maxi [reducible] : fin (succ n) :=
mk n !lt_succ_self
definition val_lift : Π (i : fin n) (m : nat), val i = val (lift i m)
| (mk v h) m := rfl
lemma mk_succ_ne_zero {i : nat} : Π {P}, mk (succ i) P ≠ (0 : fin (succ n)) :=
assume P Pe, absurd (veq_of_eq Pe) !succ_ne_zero
lemma mk_mod_eq {i : fin (succ n)} : i = mk_mod n i :=
eq_of_veq begin rewrite [↑mk_mod, mod_eq_of_lt !is_lt] end
lemma mk_mod_of_lt {i : nat} (Plt : i < succ n) : mk_mod n i = mk i Plt :=
begin esimp [mk_mod], congruence, exact mod_eq_of_lt Plt end
section lift_lower
lemma lift_zero : lift_succ (0 : fin (succ n)) = (0 : fin (succ (succ n))) :=
by apply eq_of_veq; reflexivity
lemma ne_max_of_lt_max {i : fin (succ n)} : i < n → i ≠ maxi :=
begin
intro hlt he,
have he' : maxi = i, by apply he⁻¹,
induction he', apply nat.lt_irrefl n hlt,
end
lemma lt_max_of_ne_max {i : fin (succ n)} : i ≠ maxi → i < n :=
assume hne : i ≠ maxi,
have vne : val i ≠ n, from
assume he,
have val (@maxi n) = n, from rfl,
have val i = val (@maxi n), from he ⬝ this⁻¹,
absurd (eq_of_veq this) hne,
have val i < nat.succ n, from val_lt i,
lt_of_le_of_ne (le_of_lt_succ this) vne
lemma lift_succ_ne_max {i : fin n} : lift_succ i ≠ maxi :=
begin
cases i with v hlt, esimp [lift_succ, lift, max], intro he,
injection he, substvars,
exact absurd hlt (lt.irrefl v)
end
lemma lift_succ_inj [instance] : is_embedding (@lift_succ n) :=
begin
apply is_embedding_of_is_injective, intro i j,
induction i with iv ilt, induction j with jv jlt, intro Pmkeq,
apply eq_of_veq, apply veq_of_eq Pmkeq
end
definition lt_of_inj_of_max (f : fin (succ n) → fin (succ n)) :
is_embedding f → (f maxi = maxi) → Π i : fin (succ n), i < n → f i < n :=
assume Pinj Peq, take i, assume Pilt,
have P1 : f i = f maxi → i = maxi, from assume Peq, is_injective_of_is_embedding Peq,
have f i ≠ maxi, from
begin rewrite -Peq, intro P2, apply absurd (P1 P2) (ne_max_of_lt_max Pilt) end,
lt_max_of_ne_max this
definition lift_fun : (fin n → fin n) → (fin (succ n) → fin (succ n)) :=
λ f i, dite (i = maxi) (λ Pe, maxi) (λ Pne, lift_succ (f (mk i (lt_max_of_ne_max Pne))))
definition lower_inj (f : fin (succ n) → fin (succ n)) (inj : is_embedding f) :
f maxi = maxi → fin n → fin n :=
assume Peq, take i, mk (f (lift_succ i)) (lt_of_inj_of_max f inj Peq (lift_succ i) (lt_max_of_ne_max lift_succ_ne_max))
lemma lift_fun_max {f : fin n → fin n} : lift_fun f maxi = maxi :=
begin rewrite [↑lift_fun, dif_pos rfl] end
lemma lift_fun_of_ne_max {f : fin n → fin n} {i} (Pne : i ≠ maxi) :
lift_fun f i = lift_succ (f (mk i (lt_max_of_ne_max Pne))) :=
begin rewrite [↑lift_fun, dif_neg Pne] end
lemma lift_fun_eq {f : fin n → fin n} {i : fin n} :
lift_fun f (lift_succ i) = lift_succ (f i) :=
begin
rewrite [lift_fun_of_ne_max lift_succ_ne_max], do 2 congruence,
apply eq_of_veq, esimp, rewrite -val_lift,
end
lemma lift_fun_of_inj {f : fin n → fin n} : is_embedding f → is_embedding (lift_fun f) :=
begin
intro Pemb, apply is_embedding_of_is_injective, intro i j,
have Pdi : decidable (i = maxi), by apply _,
have Pdj : decidable (j = maxi), by apply _,
cases Pdi with Pimax Pinmax,
cases Pdj with Pjmax Pjnmax,
substvars, intros, reflexivity,
substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pjnmax],
intro Plmax, apply absurd Plmax⁻¹ lift_succ_ne_max,
cases Pdj with Pjmax Pjnmax,
substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pinmax],
intro Plmax, apply absurd Plmax lift_succ_ne_max,
rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax],
intro Peq, apply eq_of_veq,
cases i with i ilt, cases j with j jlt, esimp at *,
fapply veq_of_eq, apply is_injective_of_is_embedding,
apply @is_injective_of_is_embedding _ _ lift_succ _ _ _ Peq,
end
lemma lift_fun_inj : is_embedding (@lift_fun n) :=
begin
apply is_embedding_of_is_injective, intro f f' Peq, apply eq_of_homotopy, intro i,
have H : lift_fun f (lift_succ i) = lift_fun f' (lift_succ i), by apply congr_fun Peq _,
revert H, rewrite [*lift_fun_eq], apply is_injective_of_is_embedding,
end
lemma lower_inj_apply {f Pinj Pmax} (i : fin n) :
val (lower_inj f Pinj Pmax i) = val (f (lift_succ i)) :=
by rewrite [↑lower_inj]
end lift_lower
section madd
definition madd (i j : fin (succ n)) : fin (succ n) :=
mk ((i + j) % (succ n)) (mod_lt _ !zero_lt_succ)
definition minv : Π i : fin (succ n), fin (succ n)
| (mk iv ilt) := mk ((succ n - iv) % succ n) (mod_lt _ !zero_lt_succ)
lemma val_madd : Π i j : fin (succ n), val (madd i j) = (i + j) % (succ n)
| (mk iv ilt) (mk jv jlt) := by esimp
lemma madd_inj : Π {i : fin (succ n)}, is_embedding (madd i)
| (mk iv ilt) := is_embedding_of_is_injective
(take j₁ j₂, fin.destruct j₁ (fin.destruct j₂ (λ jv₁ jlt₁ jv₂ jlt₂, begin
rewrite [↑madd],
intro Peq', note Peq := ap val Peq', congruence,
rewrite [-(mod_eq_of_lt jlt₁), -(mod_eq_of_lt jlt₂)],
apply mod_eq_mod_of_add_mod_eq_add_mod_left Peq
end)))
lemma madd_mk_mod {i j : nat} : madd (mk_mod n i) (mk_mod n j) = mk_mod n (i+j) :=
eq_of_veq begin esimp [madd, mk_mod], rewrite [ mod_add_mod, add_mod_mod ] end
lemma val_mod : Π i : fin (succ n), (val i) % (succ n) = val i
| (mk iv ilt) := by esimp; rewrite [(mod_eq_of_lt ilt)]
lemma madd_comm (i j : fin (succ n)) : madd i j = madd j i :=
by apply eq_of_veq; rewrite [*val_madd, add.comm (val i)]
lemma zero_madd (i : fin (succ n)) : madd 0 i = i :=
have H : madd (fin.zero n) i = i,
by apply eq_of_veq; rewrite [val_madd, ↑fin.zero, nat.zero_add, mod_eq_of_lt (is_lt i)],
H
lemma madd_zero (i : fin (succ n)) : madd i (fin.zero n) = i :=
!madd_comm ▸ zero_madd i
lemma madd_assoc (i j k : fin (succ n)) : madd (madd i j) k = madd i (madd j k) :=
by apply eq_of_veq; rewrite [*val_madd, mod_add_mod, add_mod_mod, add.assoc (val i)]
lemma madd_left_inv : Π i : fin (succ n), madd (minv i) i = fin.zero n
| (mk iv ilt) := eq_of_veq (by
rewrite [val_madd, ↑minv, mod_add_mod, nat.sub_add_cancel (le_of_lt ilt), mod_self])
definition madd_is_comm_group [instance] : add_comm_group (fin (succ n)) :=
comm_group.mk madd _ madd_assoc (fin.zero n) zero_madd madd_zero minv madd_left_inv madd_comm
2016-09-17 23:08:41 +00:00
definition gfin (n : ) [H : is_succ n] : AddCommGroup.{0} :=
by induction H with n; exact AddCommGroup.mk (fin (succ n)) _
end madd
definition pred [constructor] : fin n → fin n
| (mk v h) := mk (nat.pred v) (pre_lt_of_lt h)
lemma val_pred : Π (i : fin n), val (pred i) = nat.pred (val i)
| (mk v h) := rfl
lemma pred_zero : pred (fin.zero n) = fin.zero n :=
begin
induction n, reflexivity, apply eq_of_veq, reflexivity,
end
definition mk_pred (i : nat) (h : succ i < succ n) : fin n :=
mk i (lt_of_succ_lt_succ h)
definition succ : fin n → fin (succ n)
| (mk v h) := mk (nat.succ v) (succ_lt_succ h)
lemma val_succ : Π (i : fin n), val (succ i) = nat.succ (val i)
| (mk v h) := rfl
lemma succ_max : fin.succ maxi = (@maxi (nat.succ n)) := rfl
lemma lift_succ.comm : lift_succ ∘ (@succ n) = succ ∘ lift_succ :=
eq_of_homotopy take i,
eq_of_veq (begin rewrite [↑lift_succ, -val_lift, *val_succ, -val_lift] end)
definition elim0 {C : fin 0 → Type} : Π i : fin 0, C i
| (mk v h) := absurd h !not_lt_zero
definition zero_succ_cases {C : fin (nat.succ n) → Type} :
C (fin.zero n) → (Π j : fin n, C (succ j)) → (Π k : fin (nat.succ n), C k) :=
begin
intros CO CS k,
induction k with [vk, pk],
induction (nat.decidable_lt 0 vk) with [HT, HF],
{ show C (mk vk pk), from
let vj := nat.pred vk in
have vk = nat.succ vj, from
inverse (succ_pred_of_pos HT),
have vj < n, from
lt_of_succ_lt_succ (eq.subst `vk = nat.succ vj` pk),
have succ (mk vj `vj < n`) = mk vk pk, by apply val_inj; apply (succ_pred_of_pos HT),
eq.rec_on this (CS (mk vj `vj < n`)) },
{ show C (mk vk pk), from
have vk = 0, from
eq_zero_of_le_zero (le_of_not_gt HF),
have fin.zero n = mk vk pk, from
val_inj (inverse this),
eq.rec_on this CO }
end
definition succ_maxi_cases {C : fin (nat.succ n) → Type} :
(Π j : fin n, C (lift_succ j)) → C maxi → (Π k : fin (nat.succ n), C k) :=
begin
intros CL CM k,
induction k with [vk, pk],
induction (nat.decidable_lt vk n) with [HT, HF],
{ show C (mk vk pk), from
have HL : lift_succ (mk vk HT) = mk vk pk, from
val_inj rfl,
eq.rec_on HL (CL (mk vk HT)) },
{ show C (mk vk pk), from
have HMv : vk = n, from
le.antisymm (le_of_lt_succ pk) (le_of_not_gt HF),
have HM : maxi = mk vk pk, from
val_inj (inverse HMv),
eq.rec_on HM CM }
end
open decidable
-- TODO there has to be a less painful way to do this
definition elim_succ_maxi_cases_lift_succ {C : fin (nat.succ n) → Type}
{Cls : Π j : fin n, C (lift_succ j)} {Cm : C maxi} (i : fin n) :
succ_maxi_cases Cls Cm (lift_succ i) = Cls i :=
begin
esimp[succ_maxi_cases], cases i with i ilt, esimp,
apply decidable.rec,
{ intro ilt', esimp[val_inj], apply concat,
apply ap (λ x, eq.rec_on x _), esimp[eq_of_veq, rfl], reflexivity,
have H : ilt = ilt', by apply is_prop.elim, cases H,
have H' : is_prop.elim (lt_add_of_lt_right ilt 1) (lt_add_of_lt_right ilt 1) = idp,
by apply is_prop.elim,
krewrite H' },
{ intro a, exact absurd ilt a },
end
definition elim_succ_maxi_cases_maxi {C : fin (nat.succ n) → Type}
{Cls : Π j : fin n, C (lift_succ j)} {Cm : C maxi} :
succ_maxi_cases Cls Cm maxi = Cm :=
begin
esimp[succ_maxi_cases, maxi],
apply decidable.rec,
{ intro a, apply absurd a !nat.lt_irrefl },
{ intro a, esimp[val_inj], apply concat,
have H : (le.antisymm (le_of_lt_succ (lt_succ_self n)) (le_of_not_gt a))⁻¹ = idp,
by apply is_prop.elim,
apply ap _ H, krewrite eq_of_veq_refl },
end
definition foldr {A B : Type} (m : A → B → B) (b : B) : Π {n : nat}, (fin n → A) → B :=
nat.rec (λ f, b) (λ n IH f, m (f (fin.zero n)) (IH (λ i : fin n, f (succ i))))
definition foldl {A B : Type} (m : B → A → B) (b : B) : Π {n : nat}, (fin n → A) → B :=
nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi))
theorem choice {C : fin n → Type} :
(Π i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) :=
begin
revert C,
induction n with [n, IH],
{ intros C H,
apply nonempty.intro,
exact elim0 },
{ intros C H,
fapply nonempty.elim (H (fin.zero n)),
intro CO,
fapply nonempty.elim (IH (λ i, C (succ i)) (λ i, H (succ i))),
intro CS,
apply nonempty.intro,
exact zero_succ_cases CO CS }
end
/-section
open list
local postfix `+1`:100 := nat.succ
lemma dmap_map_lift {n : nat} : Π l : list nat, (Π i, i ∈ l → i < n) → dmap (λ i, i < n +1) mk l = map lift_succ (dmap (λ i, i < n) mk l)
| [] := assume Plt, rfl
| (i::l) := assume Plt, begin
rewrite [@dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (lt_succ_of_lt (Plt i !mem_cons)), @dmap_cons_of_pos _ _ (λ i, i < n) _ _ _ (Plt i !mem_cons), map_cons],
congruence,
apply dmap_map_lift,
intro j Pjinl, apply Plt, apply mem_cons_of_mem, assumption end
lemma upto_succ (n : nat) : upto (n +1) = maxi :: map lift_succ (upto n) :=
begin
rewrite [↑fin.upto, list.upto_succ, @dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (nat.self_lt_succ n)],
congruence,
apply dmap_map_lift, apply @list.lt_of_mem_upto
end
definition upto_step : Π {n : nat}, fin.upto (n +1) = (map succ (upto n))++[0]
| 0 := rfl
| (i +1) := begin rewrite [upto_succ i, map_cons, append_cons, succ_max, upto_succ, -lift_zero],
congruence, rewrite [map_map, -lift_succ.comm, -map_map, -(map_singleton _ 0), -map_append, -upto_step] end
end-/
open sum equiv decidable
definition fin_zero_equiv_empty : fin 0 ≃ empty :=
begin
fapply equiv.MK, rotate 1, do 2 (intro x; contradiction),
rotate 1, do 2 (intro x; apply elim0 x)
end
definition is_contr_fin_one [instance] : is_contr (fin 1) :=
begin
fapply is_contr.mk, exact 0,
intro x, induction x with v vlt,
apply eq_of_veq, rewrite val_zero,
apply inverse, apply eq_zero_of_le_zero, apply le_of_succ_le_succ, exact vlt,
end
definition fin_sum_equiv (n m : nat) : (fin n + fin m) ≃ fin (n+m) :=
begin
fapply equiv.MK,
{ intro s, induction s with l r,
induction l with v vlt, apply mk v, apply lt_add_of_lt_right, exact vlt,
induction r with v vlt, apply mk (v + n), rewrite {n + m}add.comm,
apply add_lt_add_of_lt_of_le vlt, apply nat.le_refl },
{ intro f, induction f with v vlt,
exact if h : v < n
then sum.inl (mk v h)
else sum.inr (mk (v-n) (nat.sub_lt_of_lt_add vlt (le_of_not_gt h))) },
{ intro f, cases f with v vlt, esimp, apply @by_cases (v < n),
intro vltn, rewrite [dif_pos vltn], apply eq_of_veq, reflexivity,
intro nvltn, rewrite [dif_neg nvltn], apply eq_of_veq, esimp,
apply nat.sub_add_cancel, apply le_of_not_gt, apply nvltn },
{ intro s, cases s with f g,
cases f with v vlt, rewrite [dif_pos vlt],
cases g with v vlt, esimp, have ¬ v + n < n, from
suppose v + n < n,
have v < n - n, from nat.lt_sub_of_add_lt this !le.refl,
have v < 0, by rewrite [nat.sub_self at this]; exact this,
absurd this !not_lt_zero,
apply concat, apply dif_neg this, apply ap inr, apply eq_of_veq, esimp,
apply nat.add_sub_cancel },
end
definition fin_succ_equiv (n : nat) : fin (n + 1) ≃ fin n + unit :=
begin
fapply equiv.MK,
{ apply succ_maxi_cases, esimp, apply inl, apply inr unit.star },
{ intro d, cases d, apply lift_succ a, apply maxi },
{ intro d, cases d,
cases a with a alt, esimp, apply elim_succ_maxi_cases_lift_succ,
cases a, apply elim_succ_maxi_cases_maxi },
{ intro a, apply succ_maxi_cases, esimp,
intro j, krewrite elim_succ_maxi_cases_lift_succ,
krewrite elim_succ_maxi_cases_maxi },
end
open prod
definition fin_prod_equiv (n m : nat) : (fin n × fin m) ≃ fin (n*m) :=
begin
induction n,
{ krewrite nat.zero_mul,
calc fin 0 × fin m ≃ empty × fin m : fin_zero_equiv_empty
... ≃ fin m × empty : prod_comm_equiv
... ≃ empty : prod_empty_equiv
... ≃ fin 0 : fin_zero_equiv_empty },
{ have H : (a + 1) * m = a * m + m, by rewrite [nat.right_distrib, one_mul],
calc fin (a + 1) × fin m
≃ (fin a + unit) × fin m : prod.prod_equiv_prod_right !fin_succ_equiv
... ≃ (fin a × fin m) + (unit × fin m) : sum_prod_right_distrib
... ≃ (fin a × fin m) + (fin m × unit) : prod_comm_equiv
... ≃ fin (a * m) + (fin m × unit) : v_0
... ≃ fin (a * m) + fin m : prod_unit_equiv
... ≃ fin (a * m + m) : fin_sum_equiv
... ≃ fin ((a + 1) * m) : equiv_of_eq (ap fin H⁻¹) },
end
definition fin_two_equiv_bool : fin 2 ≃ bool :=
let H := equiv_unit_of_is_contr (fin 1) in
calc
fin 2 ≃ fin (1 + 1) : equiv.refl
... ≃ fin 1 + fin 1 : fin_sum_equiv
... ≃ unit + unit : H
... ≃ bool : bool_equiv_unit_sum_unit
definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (nat.succ n) :=
let H := equiv_unit_of_is_contr (fin 1) in
calc
fin n + unit ≃ fin n + fin 1 : H
... ≃ fin (nat.succ n) : fin_sum_equiv
definition fin_sum_equiv_cancel {n : nat} {A B : Type} (H : (fin n) + A ≃ (fin n) + B) :
A ≃ B :=
begin
induction n with n IH,
{ calc A ≃ A + empty : sum_empty_equiv
... ≃ empty + A : sum_comm_equiv
... ≃ fin 0 + A : fin_zero_equiv_empty
... ≃ fin 0 + B : H
... ≃ empty + B : fin_zero_equiv_empty
... ≃ B + empty : sum_comm_equiv
... ≃ B : sum_empty_equiv },
{ apply IH, apply unit_sum_equiv_cancel,
calc unit + (fin n + A) ≃ (unit + fin n) + A : sum_assoc_equiv
... ≃ (fin n + unit) + A : sum_comm_equiv
... ≃ fin (nat.succ n) + A : fin_sum_unit_equiv
... ≃ fin (nat.succ n) + B : H
... ≃ (fin n + unit) + B : fin_sum_unit_equiv
... ≃ (unit + fin n) + B : sum_comm_equiv
... ≃ unit + (fin n + B) : sum_assoc_equiv },
end
definition eq_of_fin_equiv {m n : nat} (H :fin m ≃ fin n) : m = n :=
begin
revert n H, induction m with m IH IH,
{ intro n H, cases n, reflexivity, exfalso,
apply to_fun fin_zero_equiv_empty, apply to_inv H, apply fin.zero },
{ intro n H, cases n with n, exfalso,
apply to_fun fin_zero_equiv_empty, apply to_fun H, apply fin.zero,
have unit + fin m ≃ unit + fin n, from
calc unit + fin m ≃ fin m + unit : sum_comm_equiv
... ≃ fin (nat.succ m) : fin_succ_equiv
... ≃ fin (nat.succ n) : H
... ≃ fin n + unit : fin_succ_equiv
... ≃ unit + fin n : sum_comm_equiv,
have fin m ≃ fin n, from unit_sum_equiv_cancel this,
apply ap nat.succ, apply IH _ this },
end
definition cyclic_succ {n : } (x : fin n) : fin n :=
begin
cases n with n,
{ exfalso, apply not_lt_zero _ (is_lt x)},
{ exact
if H : val x = n
then fin.mk 0 !zero_lt_succ
else fin.mk (nat.succ (val x))
(succ_lt_succ (lt_of_le_of_ne (le_of_lt_succ (is_lt x)) H))}
end
/-
We want to say that fin (succ n) always has a 0 and 1. However, we want a bit more, because
sometimes we want a zero of (fin a) where a is either
- equal to a successor, but not definitionally a successor (e.g. (0 : fin (3 + n)))
- definitionally equal to a successor, but not in a way that type class inference can infer.
(e.g. (0 : fin 4). Note that 4 is bit0 (bit0 one), but (bit0 x) (defined as x + x),
is not always a successor)
To solve this we use an auxillary class `is_succ` which can solve whether a number is a
successor.
-/
/- this is a version of `madd` which might compute better -/
protected definition add {n : } (x y : fin n) : fin n :=
iterate cyclic_succ (val y) x
definition has_zero_fin [instance] (n : ) [H : is_succ n] : has_zero (fin n) :=
by induction H with n; exact has_zero.mk (fin.zero n)
definition has_one_fin [instance] (n : ) [H : is_succ n] : has_one (fin n) :=
by induction H with n; exact has_one.mk (cyclic_succ (fin.zero n))
definition has_add_fin [instance] (n : ) : has_add (fin n) :=
has_add.mk fin.add
end fin