lean2/tests/lean/hott/len_eq.hlean

94 lines
2.9 KiB
Text
Raw Normal View History

import init.ua
open nat unit equiv is_trunc
inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n}, A → vector A n → vector A (succ n)
open vector
notation a :: b := cons a b
definition const {A : Type} : Π (n : nat), A → vector A n
| zero a := nil
| (succ n) a := a :: const n a
definition head {A : Type} : Π {n : nat}, vector A (succ n) → A
| n (x :: xs) := x
theorem singlenton_vector_unit : ∀ {n : nat} (v w : vector unit n), v = w
| zero nil nil := rfl
| (succ n) (star::xs) (star::ys) :=
begin
have h₁ : xs = ys, from singlenton_vector_unit xs ys,
rewrite h₁
end
private definition f (n m : nat) (v : vector unit n) : vector unit m := const m star
theorem vn_eqv_vm (n m : nat) : vector unit n ≃ vector unit m :=
equiv.MK (f n m) (f m n)
(take v : vector unit m, singlenton_vector_unit (f n m (f m n v)) v)
(take v : vector unit n, singlenton_vector_unit (f m n (f n m v)) v)
theorem vn_eq_vm (n m : nat) : vector unit n = vector unit m :=
ua (vn_eqv_vm n m)
definition vector_inj (A : Type) := ∀ (n m : nat), vector A n = vector A m → n = m
theorem not_vector_inj : ¬ vector_inj unit :=
assume H : vector_inj unit,
have aux₁ : 0 = 1, from H 0 1 (vn_eq_vm 0 1),
lift.down (nat.no_confusion aux₁)
definition cast {A B : Type} (H : A = B) (a : A) : B :=
eq.rec_on H a
open sigma
definition heq {A B : Type} (a : A) (b : B) :=
Σ (H : A = B), cast H a = b
infix `==`:50 := heq
definition heq.type_eq {A B : Type} {a : A} {b : B} : a == b → A = B
| ⟨H, e⟩ := H
definition heq.symm : ∀ {A B : Type} {a : A} {b : B}, a == b → b == a
| A A a a ⟨eq.refl A, eq.refl a⟩ := ⟨eq.refl A, eq.refl a⟩
definition heq.trans : ∀ {A B C : Type} {a : A} {b : B} {c : C}, a == b → b == c → a == c
| A A A a a a ⟨eq.refl A, eq.refl a⟩ ⟨eq.refl A, eq.refl a⟩ := ⟨eq.refl A, eq.refl a⟩
theorem cast_heq : ∀ {A B : Type} (H : A = B) (a : A), cast H a == a
| A A (eq.refl A) a := ⟨eq.refl A, eq.refl a⟩
definition lem_eq (A : Type) : Type :=
∀ (n m : nat) (v : vector A n) (w : vector A m), v == w → n = m
theorem lem_eq_iff_vector_inj (A : Type) [inh : inhabited A] : lem_eq A ↔ vector_inj A :=
iff.intro
(assume Hl : lem_eq A,
assume n m he,
assert a : A, from default A,
assert v : vector A n, from const n a,
have e₁ : v == cast he v, from heq.symm (cast_heq he v),
Hl n m v (cast he v) e₁)
(assume Hr : vector_inj A,
assume n m v w he,
Hr n m (heq.type_eq he))
theorem lem_eq_of_not_inhabited (A : Type) [ninh : inhabited A → empty] : lem_eq A :=
take (n m : nat),
match n with
| zero :=
match m with
| zero := take v w He, rfl
| (succ m₁) :=
take (v : vector A zero) (w : vector A (succ m₁)),
empty.elim (ninh (inhabited.mk (head w)))
end
| (succ n₁) :=
take (v : vector A (succ n₁)) (w : vector A m),
empty.elim (ninh (inhabited.mk (head v)))
end